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The topology of four-dimensional manifolds(1)
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Introduction

The main problem of topology of manifolds is the characterization of
manifolds by means of algebraic invariants. For example, the orientable closed
connected two-dimensional manifolds are completely characterized by their
genus g, which determines their diffeomorphism type in a unique way. In a
similar fashion non-orientable two-dimensional manifolds are classified. Under
transition from two-dimensional to three-dimensional manifolds difficulties
grow astronomically, and up to the present there is no classification of three-
dimensional manifolds. It is not even known if a closed simply-connected
three-dimensional manifold is a standard sphere (the Poincare conjecture).

It is striking that in dimension four the investigations initiated some forty
years ago have been crowned with brilliant achievements in the last decade.
In late 1981 Freedman proved the four-dimensional topological Poincare
conjecture asserting that every metrizable topological four-manifold M4 having
the homotopy type of the four-dimensional sphere £ 4 = {.r <ΞΞ R5: | a; | = 1}

(1)These are often called four-manifolds or 4-manifolds. (Ed.)
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is homeomorphic to S4. As a matter of fact, Freedman managed not only to
prove the above conjecture but also to obtain a complete classification of
closed simply-connected topological manifolds. The main idea of a solution to
this classification problem due to Casson is to construct a certain entirely
topological infinite process enabling one to perform the Whitney trick in
dimension four. In 1982 Donaldson, using methods of mathematical physics,
described smooth four-dimensional manifolds with a positive intersection form.
One of the striking corollaries of Donaldson's theorem is the existence of
exotic smooth structures on the Euclidean space R4. (A continual family of
such structures is now known.)

The results by Freedman and Donaldson have served as a stimulus to the
rapid development of the topology of four-dimensional manifolds and its
applications to geometry and mathematical physics.

The current survey is devoted to presentation of the main results in the
topology of four-dimensional manifolds obtained in the last decade.

CHAPTER I

CLASSIFICATION OF SIMPLY-CONNECTED TOPOLOGICAL FOUR-DIMENSIONAL
MANIFOLDS

In this chapter we present Freedman's results on classification of
simply-connected topological four-dimensional manifolds. To obtain this
classification, it was necessary to encompass the whole of a huge arsenal of
techniques of algebraic and geometric topology, as well as to invent a number
of new tricks. Taking into account the fact that complicated technical details
of the proof of the theorem on classification of simply-connected four-
dimensional manifolds are often camouflaging the underlying ideas and
methods, in the present survey we have restricted ourselves to a detailed sketch
of the proof. At the same time, we have included in the present chapter those
fundamental theorems on four-dimensional manifolds that have made it
possible to draw near to a solution of the classification problem.

The reader must be warned that by virtue of Cairns' theorem in dimension
four there is no difference between smooth (Diff) and piecewise linear (PL)
manifolds: each PL-manifold bears a unique Diff-structure. Therefore,
depending on circumstances, we make use of both structures in turn,
sometimes without specifying which of them is currently under consideration.

§1. Intersection forms of four-dimensional manifolds

Let Μ be a closed simply-connected four-dimensional manifold. Using
Poincare duality and the fact that H\(M) = πι(Αί)/[πι(Μ), πχ(Μ)] = 0, it is
not difficult to show that the integer homology and cohomology of Μ look
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like this:
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Here m stands for the second Betti number of M. If χ and y
are homology classes from H2(M), then their homology intersection
index is defined: x-y = y-x ς= Ζ. By virtue of Poincare duality,
# 2 (Λ/) 3ί # 2 (Af) ^ Horn (H2 (Μ), Τ). Hence, the symmetric bilinear form

LM: H2 (Μ) χ Ht (M) -> Z, £ M (*, y) = x-y

is non-degenerate and it can be represented by a symmetric integral
unimodular matrix AM. It is obvious that the class of forms isomorphic to
LM is in one-to-one correspondence with the class of matrices congruent to AM-

The form LM can be described in cohomology terms as well. Let
u, ο € H2(M) be any two-dimensional cohomology classes. We set

LM («, v) = <u Z.

Since w U ο = ο \J u, the form LM is symmetric, and by virtue of Poincare

duality it is non-degenerate. Let χ = Du, y = DO, where D: H2 (M) -^ H2 (M)
is the Poincare duality isomorphism. Then x-y = D (u \J v), hence it follows
that (H2(M), LM) and (H2(M), LM) are isomorphic as inner_ product spaces.
This isomorphism enables us to identify the forms LM and LM', in what
follows we will denote them by the same symbol LM and consider LM in case
of need either as an intersection form or as a cohomology cup product form.

Thus, the homology structure of a closed simply-connected four-
dimensional manifold Μ is completely determined by the integral non-
degenerate form LM- In this connection it is useful to recall briefly a
classification of such forms (see [36], [41]).

Let Η be a free Abelian group of a finite rank. We say that a bilinear
symmetric form L: Η χ Η -*• % is a form of type I (or an odd form) if there
is an χ e Η such that L(x, x) is an odd number. Otherwise L is said to have
type II (or to be even). Clearly, L has type II if and only if the associated

quadratic function qi, (Χ) = -γ L (χ, χ) takes values in Z. The rank of the

Abelian group Η is called the rank rk L of the form L. Since the form L is
non-degenerate, rk L equals the rank of any matrix AL representing it. The
matrix AL can be diagonalized over the rational number field, and the
signature c(L) of the form L is defined as the signature of the matrix AL over
Q, that is, the number of positive terms minus the number of negative terms
in the diagonalization of AL. If rk L = \a(L)\, then L is called definite;
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if rk L > \c(L)\, then L is called indefinite. An element χ e Η such that
Ux, y) = qL(y) mod 2 for all y e Η is called characteristic.

We now define several canonical forms. We denote by ± / the form
represented by the matrix (±1), by U the form represented by the matrix

0 1
1 0 and by E% the form represented by the matrix

2 i 0 0 0 0 0 0
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The same symbols will stand for the corresponding inner product spaces.
The following classification theorems hold.

Theorem 1.1 (van der Blij). Every symmetric non-degnerate form
L: Η χ Η —>- X possesses charateristic elements, and if χ e Η is a characteristic
element of it, then L(x, χ) = σ(Ζ,) mod 8. In particular, the signature of a
symmetric non-degenerate form L of type II is divisible by 8.

Theorem 1.2 (Serre). Let L be an indefinite non-degenerate symmetric form of
rank r = p + n and signature σ = ρ—η (ρ, η > 0).

(i) If L is a form of type I, then L s pi φ «(—/)•
(ii) If L is a form of type II, then L s aEs φ bU, where a = (1/8)σ and

b = (l/2)(r-|a|). •

A complete classification of non-degenerate definite forms is not known.
There are only the following partial results. For η > 1 we denote by In the
set of isomorphism classes of positive definite non-degenerate forms of rank η
of type I, and for η = 8fc we denote by IIn the set of isomorphism classes
of positive definite non-degenerate forms of rank η of type II. Let
c(In) = card(In) and c(IIn) = card(IIn). We have the following information
on the integers c(In) and c(IIn):
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Let us consider a few examples. Let Ρ be £P2 with the usual orientation,
and let Q be CP2 with the opposite orientation. Then LP = I, LQ ^ —I.
For Μ = S2xS2 we have LM s U. If Μ = Mt φ Μ2 is a connected sum
of two manifolds, then LM = £M, Θ LMl.

Let Μ be a closed simply-connected manifold, Η = Η2(Μ), and let LM be
the cup product form. A two-dimensional cohomology class χ e Η is a
characteristic element if and only if its mod 2 reduction is the second Stiefel—
Whitney class w2(M). Hence it follows that LM has type II if and only if
w2(M) = 0, that is, in the case where Μ is a spinor manifold. In dimension 4,
the property of being a spinor manifold is equivalent to almost parallelizability.
To verify this, we observe that if τ : Μ -*• BSO is a map corresponding to the
tangent bundle, then obstructions to τ being homotopic to a constant map are
in groups Hk(M; %k(BSO)). Moreover, w2 (Μ) = τ* (w2), where w2 is the
generator of the group H2 (BSO) s π 2 (BSO) £* Z/2. Therefore, if w2(M) = 0,
then the restriction of the tangent bundle xM to the three-dimensional skeleton
of Μ is trivial. Thus, τΜ\Μ—pt a; 0, and hence Μ is almost parallelizable.

Thus, the type of the form of a smooth closed simply-connected manifold
Μ is determined by the second Stiefel—Whitney class. If w2(M) φ 0, then
LM is of type I, and if w2(M) = 0, then LM is of type II. In particular, by
Theorem 1.1 the signature of such a manifold is divisible by 8. (We recall
that the signature of a manifold is defined as the signature of its form LM)

In 1952 Rokhlin [4] discovered the following astonishing property of four-
dimensional spinor manifolds.

Theorem 1.3 (Rokhlin). If Μ is an oriented closed smooth four-dimensional
manifold with w2(M) = 0, then σ(Μ) = 0 mod 16.

Proof. Consider the Whitehead 7-homomorphism

./: %., (SO (//?.)) — n e i t . , (S'"),

defined by

[/] <= π».! (SO (m)) ~ [./ (/)] 6Ξ Jim+Il._i (Sm).

where / (/): Sm"]:~l ->• Sm is the map obtained from

(/, id): S*-1 χ S*"-1 ->- S™-·. (/. id) (*, y) = / W (u)

by passing over to the join

i5 :|: ,> = Ο »- i O — U

With the help of Steenrod algebra calculations one can show that

/ : π 3 (SO (m)) -+ nm+3 (Sm)

is an epimorphism for sufficiently large m. But π 3 (SO (m)) ^ Ζ and
jim + 3 (Sm) ^ Z/24. Hence if J(x) = 0 for χ e π3(5Ο(»ι)), then χ Ξ 0 mod 24.
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Now let Μ be a closed smooth four-dimensional manifold with w2(M) = 0.
As was shown above, Μ is almost parallelizable. Consequently, the stable
principal normal bundle ν is trivial on M—pt and the obstruction extending a
trivialization / of the bundle v|M—pt to a trivialization of the bundle ν is a
cohomology class e(v,/) e H4(M; n3(SO(m)) s n3(5O(m)) = Z- It is
verified straightforwardly that J(e(y, f)) = 0, whence it follows that e(v, / ) is
divisible by 24. On the other hand, e(v, / ) = ±px(M), where p\(M) is the
Pontryagin number of M. Hence p\(M) = 0 mod 48. But according to the
Hirzebruch formula, P\(M) = 3σ(Μ), so that σ(Μ) = 0 mod 16. •

§2. The Pontryagin—Whitehead and Novikov-Wall theorems

In the preceding section we have linked to every closed simply-connected
four-dimensional manifold Μ its intersection form LM. Now we ask the
question: to what extent the manifold Μ itself is determined by the form LM.
The first result in this direction was the following theorem obtained in 1949
by Pontryagin [3] and independently by Whitehead [55],

Theorem 2.1 (Pontryagin—Whitehead). Let Mx and M2 be closed simply-
connected four-dimensional manifolds and let LM, and LMlbe their intersection
forms. There exists a homotopy equivalence M\ -» M2 compatible with the
orientations if and only if the pairs (H2 {ΜΛ), LMl) and (H2 (M2), LM,) ore
isomorphic as inner product spaces.

Proof. We denote by Ε the interior of a four-dimensional ball embedded
in M\. Making use of the exact homology sequence of the pair (Μι, Μι— Ε)
with coefficients in Ζ and the Poincare duality, it is not difficult to show that
Hi{Mx-E) s Hi(pt), i Φ 2. In addition, Η2{Μλ-Ε) s Η2{Μλ) is a free
Abelian group. Let m = rk H2(M\—E). Since ii\{M\—E) = 0, by the
Hurewicz theorem

π2 (Mt - E)^H2 (M1 -E)^H2 (MJ.

Therefore, there exists a map

inducing isomorphism in homology

Hm {S* V · · - V S2) - Η* (Μ, - E).

Since the manifold Μ χ—Ε is an absolute neighbourhood retract, it has the
homotopy type of a CW-complex. Hence, by Whitehead's theorem, / is a
homotopy equivalence.

We now observe that Mi is obtained from Μι — Ε by attaching to it a
four-dimensional cell. Thus, M\ has the homotopy type of a space obtained
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f r o m t h e w e d g e ( o n e - p o i n t u n i o n ) S2\J . . . V S2 b y a t t a c h i n g t o it a four-
lil

dimensional cell with the help of a map

g: S3 -v S* V · · • V S2.

Let us denote this space by (S2 V . . . V S2) \Jg E4. The homotopy type
of Μ is entirely determined by the homotopy class of the map g in
n3 (S> V · • · V S*).

In order to calculate the group n3 (S2 \/' . . . V S'2), let us embed
S" = CP1 in the infinite-dimensional complex projective space £P<" and use
the embedding

S 2 V · · · V s " " c S 2 χ · · · χ s2czCP00 χ . . . χ CP°° .

For the sake of brevity we put

Β = S2 V · · · V S 2 ' Λ ' = C/ 5 0 0 X . . . X

Then the embedding Β <Ζ. Κ provides isomorphisms

H, (K) ^ H, (K,B) ^ π4 (Κ, Β) ^ π 3 (Β).

Indeed the first of these isomorphisms is obtained from the exact homology
sequence for the pair (Κ, Β), the second one from the relative Hurewicz
theorem, and the third one from the exact homotopy sequence for the pair.

Obviously, H4(K) is a free Z-module. The dual module

H* (K) ^ Horn {H4 (Κ), Ζ)

has a basis formed by products w,· U «,·, i < j , where u\, ..., um is a basis for
the cohomology group

JP (K) ss ii2 (5) s ^ (M1 -E)^H* (MJ.

We extend the embedding Β -*• Κ to a map fi Ug £ 4 -> -̂ - Let
o,- U oy e H\B (Jg E4) s //"̂ CMj) stand for the images of elements
Ui U My € H\K) under the homomorphism

F* (Κ) -~ Η* (Β \jg E*),

induced by the map Β \Jg EA -* K. By calculating the value of o,· U Oj at the
fundamental class [Mi] of Mi, we obtain an integral symmetric matrix

<»i U vj, iMJy.

It is easily seen that the corresponding bilinear form on H2(M{) = /f2C^i)
is nothing but the intersection form. At the same time, the matrix
(vi U Vj, [Af,)> completely determines the homotopy class of the attaching
map in π3(β) s π4(Κ, Β) s H4(K). Thus, classes of attaching maps
igl e π 3 (S2 V . . . V 'S'2) a r e i n one-to-one correspondence with non-
degenerate integral forms, as required. •
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In 1964 Novikov [1] and independently Wall [54] significantly strengthened
the Pontryagin—Whitehead theorem. To formulate their result, we recall that
closed manifolds Μ", M2 are said to be cobordant if there exists a
compact manifold W"+l with boundary dW+l = M" U M2; the triple
(W+i; M", M2) is called a cobordism, and the manifold W+1 is called a
membrane spanned over Μ", M2. A cobordism (Wn+1; M", M2) is called
an h-cobordism if both inclusions h : M" C, ί Γ η + 1 , ι2 : Μ 2 " ς Γ + 1 are
homotopy equivalences, and an s-cobordism if both i'i, i2 are simple homotopy
equivalences in the Whitehead sense. (As to the latter definition, see [35].)

Theorem 2.2 (Novikov—Wall). Two homotopically equivalent smooth closed
simply-connected four-dimensional manifolds are h-cobordant.

Combining this theorem with the Pontryagin—Whitehead theorem, we
deduce that closed simply-connected four-dimensional manifolds M\ and M2

are Λ-cobordant if and only if their intersection form LMi and LM, are
isomorphic.

Proof. We use the following classical construction. Let Μ be a closed
smooth four-dimensional manifold embedded with the normal bundle ν in the
(N+4)-dimensional sphere SN+4 for sufficiently large positive N. Assuming
that ν is endowed with a Riemannian metric, let us denote by D(y)
(respectively, S(v)) the bundle associated with v, with unit disk (respectively,
unit sphere) as a standard fibre. Then the space Γ(ν) = D(v)/S(v), called the
Thorn space of the bundle v, is defined. Since D(v) and S(v) lie in the sphere
SN+4, contracting the complement SN+i — D°(v) of the space £>(v) to a point
we get a degree 1 map

c: SN+* -ν Τ (ν),

called the Pontryagin —Thorn map. The homotopy class [c] e πΝ+4(Τ(ν)) of
this map is called the normal invariant of the bundle v.

Now let Μι, Λ/2 be given four-dimensional manifolds, and let vi, v2 be
their normal bundles in a sphere SN+4. We observe that in order to prove
the theorem it suffices to construct a homotopy equivalence ψ : Μι -*• M2

meeting the following conditions:
(i) the map ψ is covered by a normal bundle isomorphism ψ : vi -»• v2,

that is, the following diagram commutes:

(ii) the induced map between Thorn spaces ΓΨ : T(vi) ->• Γ(ν2) sends the
rmal invariant oti e πΝ+4(Τ(νι)) to the normal invariant oc2 e πΝ+4(Τ(ν2)).
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Indeed, if such a homotopy equivalence ψ has been constructed, then there
is a homotopy Γ : SN+4xI -* T(y2) connecting the maps

and

SN+A - ^ Τ (ν2) - ^ Τ (ν2).

By a small perturbation Γ can be made transversal to a submanifold
M2 C T{v2). Then Γ - 1 ( Μ 2 ) becomes a membrane spanned over Mi and Af2.
After performing a finite series of spherical surgeries of Γ~1(Μ2) we obtain
the required Λ-cobordism.

Thus, suppose we have a homotopy equivalence φ : Μι -* Μ2. First of
all, we show that it is covered by a normal bundle isomorphism. Indeed, we
identify Mi and M 2 by means of a homotopy equivalence φ and consider two
bundles Vi and v2 over Mi (that is, vi and <p*v2). Let γ be the principal
0(JV)-bundle corresponding to VJ— v2. We wish to show that it is trivial.

Since πι(Μι) = 0, γ is a principal S0(iV)-bundle. The first obstruction
Οι(γ) to its trivialization, that is, to the existence of a non-vanishing section, is
in the group H2 (Mx; n2 (BSO (TV))) = W {Mt; 112). The obstruction ο,(γ) is
functorial and it is an invariant of 5O(7V)-bundles. Therefore, it is covered
by a universal class belonging to the group H2 (BSO (N); 112) ~ 112.
It is easily verified that this universal class is non-trivial, and hence
it coincides with the universal Stiefel—Whitney class w2. Further,
vf2(vi— v2) = w2(vi) — w2(v2). By virtue of Wu's formulae, the Stiefel —
Whitney classes of a normal bundle are homotopy invariant. Therefore,
w2(v!-v2) = 0, that is, ox(y) = 0. Since H3(MU BSO(N)) = 0, the next
obstruction o2(y) is in the group Η4 (Μλ; π4 (BSO (Ν))) ss Ζ· We know
already that the bundle γ is trivial over the two-dimensional skeleton Mp ] of
Mi, therefore γ is induced from a bundle γ over Μι/Λ/p' ^ S4. Let us
calculate its Pontryagin class pi(y). Inducing γ on Mi, we obtain the bundle
Vi— v2. But according to Hirzebruch's formula ρι(νι —v2) = 0, and the
homomorphism H\SA) -»• H\Mi) is an isomorphism. Hence, pi(y) = 0, so
it follows that γ = 0. Thus, γ = 0, that is, Vi = v2.

Thus we have proved that any homotopy equivalence φ of simply-connected
four-dimensional manifolds M\ and M 2 is covered by an isomorphism of their
normal bundles Φ : vi ψ> ν2. We will now be concerned with the normal
invariants of normal bundles. Generally speaking, the homotopy equivalence
φ : Μι -> M 2 does not send αϊ e πΝ+4(Τ(ν{)) to a2 e πΛτ+4(71(ν2)), and we
have to modify it. We denote by TW (V l), TW (v2) respectively the Thom
spaces of the bundles v, | M\n, V2 | M\n. (Here ν, | Μψ] stands for
the restriction of the bundle v,· to the fc-dimensional skeleton of the
manifold Mt,i - \, 2.) Let ΓΦ : Γ(ν}) -> Γ(ν2) be the map of Thom
spaces induced by the bundle isomorphism Φ : Vi -> v2. Since normal
invariants are homotopy classes of degree 1 maps, the image of αϊ
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in nN+i {Τ (vJ/TW (vj)) = nN+i (SN+i) goes to the image of a 2 in
JIJV+4 (T (v2)/TW (v2)) = JIJV+4 (S jV+4). Taking into account that Ν is chosen
to be sufficiently large and we are dealing with stable homotopy groups, we
can assume that the element θ (φ) = (ΓΦ)* (cu) — a1 is in the group
ΠΛΓ+4 (JI"21 ( v j ) .

If θ(φ) = 0, then oil goes to a2 and everything is proved. Therefore we
suppose that θ(φ) Φ 0. We must change φ so that the equality θ(ψ) = 0
holds in the group π^ + 4 (ft-i (v,)/Tl°] (Vl)) for a new homotopy equivalence ψ.
This would complete the proof, for xiN+i (7Ί°ΐ (vj) = πΝ+4 (SN) = 0 and

itjv+4 (?[2] {vJ/TM (vj)) = n-N+i ( V si +")- where m = dim Η2(Μλ).

The homotopy equivalence φ : M\ -* M2 can be changed by an

element β FE ̂ 4 (M^) ^ π 4 (\/ Sf). The new homotopy equivalence ψ

will still be covered by a normal bundle isomorphism. Indeed, since

β* Ρ ι (ν2 | Λ/|2]) = Ρι (β* (v2)) = 0, we have β* (v2) = (J. Hence in order to
m

prove the theorem it remains to discover an element β c= π 4 (Μ|2]) = π 4 (\/S$)

such that θ(ψ) = 0. We consider as β the composition β = ε ο η <= π 4 (\JS%),
III

where η is a generator of the group π4(53) and ε is an element of n3 ( \/ S\).
Clearly, by a suitable choice of ε we can ensure that Σ^β = θ(φ). But having
changed the homotopy equivalence φ to an element β satisfying Σ^β = θ(φ),
by the same token we are changing (ΓΦ)* (α2) — α 1 ; viewed as an element of
Jtiv+4 (TW (vJ/TW (V l)), to θ(φ). Hence,

θ (\\ή = (ΓΦ)* (α,) — α, — 0 (φ) = θ (φ) - θ (φ) = 0 ,

as required. •

Thus, we have proved that any two closed simply-connected four-
dimensional manifolds M\ and M2 with isomorphic intersection forms LMX and
LM. are Λ-cobordant. If the dimension of the manifolds M\ and M2 were
higher than four, then one could proceed further and prove that M\ and M2

are PL-homeomorphic. This follows from the so-called ft-cobordism theorem
of Smale [45]. But Smale's proof is inappropriate for four-dimensional
manifolds. To unravel the situation, in the next section we will analyse
Smale's proof and elucidate those difficulties of principle that prevent us from
proving the A-cobordism theorem for four-dimensional manifolds.

§3. Handle body theory. The ft-cobordism theorem

In this section we will somewhat digress from our main topic and be
concerned with handle body theory and the A-cobordism theorem. We recall
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that by virtue of Cairns' theorem [12] every four-dimensional PL-manifold
bears a unique smooth structure. Therefore, in order to avoid unnecessary
technical details, we will consider here PL-manifolds only. Nevertheless, all
the following theorems and proofs can be transferred to other categories of
manifolds as well.

Let Ww be an arbitrary piecewise linear manifold, and let Η be a
w-dimensional ball such that W Π Η = dJV and there exists an isomorphism
(that is, a piecewise linear homeomorphism) h : Dpχ Dq -*• Η such that
h(dDp xDq) = Η Π W. Then we say that Η is a p-handle or a handle of
index ρ on W (notation: Hip)). The disk h(Dp χ 0) is called the core of the
p-handle H, and the disk /z(0x£>O the co-core of it. The sphere h(dDpx0) is
called the attaching sphere, and the sphere h(0x 9.0*) the belt sphere of H.
The isomorphism h is called the characteristic map of H, and the embedding
/ = h\dDpxD9 the attaching map.

Let {W; Mo, Mi) be a cobordism and let Η be a handle on the manifold W.
If Η Π W Q. M\, then Η is said to be a handle on the cobordism W. By
putting M2 = dW'—Mo, where W = W U H, we obtain a new cobordism
(W; Mo, M2), which will be said to be obtained from the initial cobordism
by attaching a handle H. For a cobordism W obtained by a consecutive
attaching of handles in such a way that a handle / / ( ' J } is attached to a
cobordism W \J /7<r>> IJ /7<r-> U · · • U Ar<';'~l)> the following notation is often
used:

W = W U # ( r i > U # ( r > ) U • • · U ^("m)-

In most of the applications of handle body theory, handles on cobordisms
are used. At the same time it is clear that for Mo = 0 the notion of a
handle on cobordism reduces to the notion of a handle on a manifold.

If VF'»+1 = W U HW U # ( r t l ) , then both the belt sphere
S"~r = fe<r> (OxdDn-'+l) of the handle //(r) and the attaching sphere
Sr

2 = fcc-i-i) (dDr+1 x 0)of the handle #'r+1> lie in M2 = d (W {] 7/<r>) — Mo

and have complementary dimensions therein. Therefore by a small
perturbation of the attaching map of the handle H(r+1) to a general position
we can make the spheres 5Ί and S2 meet transversally at finitely many points.
Since characteristic maps endow the sphere 5Ί and S2 with standard
orientations, the intersection index Sx-S2 is defined. We will call this index
the incidence index of the handles i/<r> and H<-r+1) and denote it by
(H^K -ff(r+1)). If S\ and S2 meet transversally at a unique point, then Hir)

and //<r+1> are said to be complementary handles. If the incidence index
ε (Η^\ #( r i l>) equals ± 1 , then the handles #<r> and # ( M l ) are said to be
algebraically complementary.

A handle decomposition of a closed manifold W"+1 is a decomposition
W = /ίο U Ηχ U ... U /ifc, where /f0 is a disk of dimension n + 1 and
ifi f l is a handle on W{ = \J H}. If {W; Mo, M{) is a cobordism, then

Jg*
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a handle decomposition of the cobordism on M<> is a decomposition
W = (Mox/) U ^ i U ··· U Hk, where Mo*.I is an obvious cobordism and
Hi+i is a handle on the cobordism (Mo x /) U U. Hj. Any smooth or

piecewise linear manifold (and, therefore, cobordism) can be shown to admit a
handle decomposition. For topological manifolds this is no longer true
(see [11]).

There are several basic rules for treating handles.
I (regrouping). If W = W {J //<"·> (J # w and s =ζ r, then

W'^W\J #<s> U //« With # w and tf(r> non-intersecting.
II {cancellation). If for W = W 'J //<r> (J #<Γ+1> the handles # « and W+v

are complementary, then there is an isomorphism h : W -* W that is the
identity outside any neighbourhood of the union # ( r ) LI # ( Γ + 1 ) ·

III (decomposition). Let W = W [j Bn+l and let Bn+l f] W •= Β f]
Π M t = B, be a face of the disk 5. Then W = W[j # ο y #<»-i), where
if(r) and //<1+1> are complementary handles.

IV (attaching handles). Let f*'"11 = W \J T/O-D y /^ir) U M r ) . where
r ^ 2 and η > r+ 1. If the manifold d (W U ^ r- 1>) — Mo is simply-
connected, then there is another handle decompositon W"+1 = W U //(r~1) U
LJ M r ) U H-P of W"+1 with ε (#ο-«, //<r)) - ε(Η^~ι\ Η(Ρ) ± ε (7/<^D, //('·)).

V (algebraic cancellation). Let W" = PFn+1 y i/<r) y ^ ί " 1 ) . Suppose that
Μ is simply-connected, n - r ^ 3, r ^ 2, η Ss 5. If the handles £T(r> and ^< r + 1 '
are algebraically complementary, then W ^ W.

There is a basic difference between the rule I —IV and the rule V. The first
four rules are proved by means of general position arguments. Rule V is
based upon the so-called Whitney trick, which is as follows.

Theorem 3.1 (Whitney [56]). Let Pp and Qq be oriented submanifolds of an
oriented manifold Mm, where p + q = m. Suppose also that the submanifolds
Pp and Qq meet transversally, x, y e Pp Π Qq, and (P-Q)x = —(P-Q)y. If
either ρ ^ 3, q ^ 3, and nx(M) = 0, or ρ = 2, q ^ 3, and%x(M-Q) = 0,
then there is an isotopy of Μ sending Ρ to a submanifold P' which meets Q
transversally in such a way that Ρ' Π Q = Ρ Π Q — {x, y}- Moreover, the
support of the above isotopy is contained in a compact set containing no other
intersection points.

Sketch of the proof. We join the points χ and y in Ρ and Q, respectively, by
curves α and β not passing through other intersection points. We show that
there is a two-dimensional disk D2 Q Μ such that QD2 = α U β and
D2 Π (Ρ U 0 = QD2 (this disk D2 is called the Whitney disk). Indeed, if
ρ > 3, then by virtue of the condition %\(M) = 0 there is a map f: D2 ~* Μ
such that/(3Z)2) = α U β· By putting this map into general position, we
obtain the desired disk. In a similar though somewhat more cumbersome way
the case ρ = 2 is analysed.
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We now consider a regular neighbourhood (N, Bu B2) of the Whitney disk
D2 in (M, P, Q). We can show that (S, Su S2) = 8(iV, Bu B2) is a trivial
linkage. Hence there is an unknotted sub-ball B{ such that dB{ = S\ and
B{ Γ) B2 = 0. Therefore there is an isotopy of the ball Ν that is stationary
on dN = S and sends B\ to B{. Extending it to the whole manifold Μ by
means of the identity map, we get the required isotopy. •

Corollary 3.2. Under the hypotheses from Whitney's theorem, the submanifold Ρ
can be transformed by means of an isotopy to a submanifold Ρ' transversal
to Q in Μ such that if η = P-Q, then P'f] Q = {xu . . ., z H } with
(P'-Q)xt - sign η for η Φ 0 and Ρ' Π Q = 0 for η = 0. •

Using the handle body theory, Smale [45] proved the following remarkable
theorem in 1961.

Theorem 3.3 (Λ-cobordism theorem). Let {Wn+1; Mo, Mt) be a simply-
connected h-cobordism and let η ^ 5. Then W s Mo x /. In particular, Mo
and Mi are isomorphic.

Proof. By virtue of the rule I and the transversality of the product cobordism,

Wn+1 can be represented as

wn* = (M0 χ i) υ ( ΰ Hf>) u ( 0 Ηψ) u . . - u ( u M n )) υ (αΰ+1^"+1))>
1 = 1 J = l ! v = l 1 = 1

where all the handles of the same index do not meet pairwise. Now, using the
connectedness of W"+1, we can show that each 0-handle cancels with a
1-handle. Cancelling a0 0-handles with a\ 1-handles, we obtain a new handle
decomposition containing no 0-handles and a\— ao 1-handles (α\— αο ^ 0 from
homology considerations).

Since the attaching to the cobordism W = (M o x/) U #1 U ••· U Ht of a
trivial cobordism M\ χ / does not change W,

W = (Mo X /) U tli U · · · U tlt U (M\ X /).

We put W*+i = (Mi X /) U U //;·. The factor permutation automorphism

DpxDq -*• D9xDp enables us to consider a p-handle Hi as a ^-handle Hi
on Wt+i- Hence Wi provides a dual handle decomposition of our
cobordism, where any p-handle turns into an (n + 1 —/?)-handle. In
particular, to the cancellation of 0-handles with 1-handles in the dual handle
decomposition there corresponds the cancellation of (« + l)-handles with
η-handles in the original decomposition. Thus, by virtue of the connectedness
of W and the fact that Mo Φ 0, M\ φ 0 , we can assume that our
cobordism has neither 0-handles nor («+ l)-handles. Further, by using the
simple-connectedness of W, the rule IV, and the dimensional restriction η ^ 4,
we can kill such 1-handles with the help of 2-handles, and «-handles with the
help of (n — l)-handles. After these operations, the following equalities hold in
a decomposition of W : a0 = a\ = an = an+i = 0.
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To proceed further, we need to apply the rule V. Making use of the
simple-connectedness of W and the fact that the embedding Mo C W is a
homotopy equivalence, for any j-handle H^, 2 < s < n — 3, we can
construct, by means of attaching and subtraction of (s + l)-handles, a handle
i / ( j + IJ that is algebraically complementary to 7/ w . After this, in the case
η ^ 5 we can use the rule V, which makes it possible to cancel the handles
i/ ( j ) and H^+1\ Thus, we can assume that there are only handles of indices
n—2 and n — 1 in a decomposition. But if we now apply the rule V to the
dual decomposition, then by the same token all the (n —l)-handles are excluded.

Thus, after all the above operations only handles of index n — 2 may appear
in a decomposition. But since i/n_2(W, Mo) = 0, it is impossible that only
handles of index n—2 are present in a decomposition. Hence under exclusion
of (n — l)-handles all the (n — 2)-handles have disappeared as well. Thus, we
remain with W = Mo x /, as required. •

The Λ-cobordism theorem generalizes to the non-compact case (under the
same dimensional restrictions). We will give a few definitions before
formulating it. Let W be a non-compact manifold. A set U C W is called a
neighbourhood of infinity in W if W — U is compact. A manifold W is said
to be connected at infinity if it has arbitrarily small connected neighbourhoods
of infinity. A manifold W is called simply-connected at infinity if for every
neighbourhood of infinity U there is a simply-connected neighbourhood of
infinity V contained in U. A triple (W; Mo, Mi) is called a proper
h-cobordism if W is a non-compact manifold with a compact boundary
9W D M o U Mi and both inclusions /„: Mo c, W. i^. Μλ c, W are
homotopy equivalences.

Theorem 3.4 (Siebenmann [42]). Let (W"+1; Mo, Mi) be either a
simply-connected smooth or a piecewise linear proper h-cobordism, and let
η > 5. Suppose that W is simply-connected at infinity. In addition, if
C = 8iF-(Mo U Mi) is non-empty, suppose that C S (C Π M 0 )x/. Then
W s Mo x /. •

The proof of the A-cobordism theorem presented above does not go over to
four-dimensional manifolds. The reason for that is that Whitney's theorem is
no longer true in dimension four. To convince ourselves of that, let us return
once again to the proof. If m = 4, then there is no immersed Whitney disk.
In this case we can only find an immersed disk / ' : D2 -»· Μ such that
f(dD2) = α U β and D2 Π (Ρ U Q) = 8-D2 U {transversal intersection
points xu ..., xk for some k}. Without having eliminated self-intersection
points of D2 and points of its intersection with Ρ \J Q, we cannot speak
about any isotopy of submanifolds.

An extensive list of publications is devoted to attempts to find either a
proper substitute for the Whitney trick or a way to proceed without it.
A survey of results in this direction is contained in [38].
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§4. Casson handles

In 1973 Casson [13] proposed a clever approach to surmounting difficulties
related to the Whitney trick in dimension 4. An infinite construction devised
by him enables us to turn all the intersection points out "to infinity". As a
result, we get the necessary results but only up to proper homotopy type.

Theorem 4.1 (Casson). Let (W4, dW4) be a simply-connected smooth four-
dimensional manifold with boundary and let f : D2 -* W4, i = 1, ..., n, be
maps of a disk D2 such that f^D2 : 9D 2 ->· dW4 are immersions with non-
intersecting images. Suppose that all the intersection indices /;·/,- vanish (they
are defined for i Φ j) and there are homology classes β,- e H2(W) with even
squares β; = (ij-β; such that β;·/7· - 6i;·. Then there are disjoint open sets
Vi C W such that:

(1) the pair (Vt, Vt Π ciW) has proper homotopy type of the pair
(D 2 X R 2, Si X R 2);

(2) Vt Π δ W is an open tubular neighbourhood of the image f φΰ2) in δ W\
(3) the map f is rel δ homotopic to a map into Vt.

The manifolds Vt are called Casson handles.

Proof of Theorem 4.1. It is based on several lemmas, which are of interest on
their own because they contain a description of Casson handles. We call an
immersion/: D2 -• W normal if/OS1) is immersed in dW, / i s transversal to
QW in f(S}), and all the self-intersections are transversal double points in int W.

Lemma 4.2. Let W be a smooth simply-connected four-dimensional manifold and
/ : D2 -y]V a normal immersion. Suppose there is a homology class β e H2(W)
with /·β = 1. Then f is regularly rel δ homotopic to a normal immersion
g : D —*• W such that W—g(D) is simply connected.

Proof Since /· β — 1, a straightforward homology group calculation shows
that Hi(W-f(D2)) = 0, so the group n^W-fiD2)) is perfect. Let ζ be a
meridian of/(I>2) and let w e ni(W-f(D2)) (Fig. 1, p. 182). We will show
first how to cancel the commutator [z, zw] — z(w~1zw)z~1(w~izw)~l. With
this purpose in mind, let us construct an immersion g : D2 -» W by pushing
/(Z)2) through along the loop w so as to make the "finger" return back near
the original position. Consider a four-dimensional disk in int W partly
containing /(i) 2) and a "finger" approaching it (Fig. 2). By connecting f(S2)
and the "finger" by an arc and applying the inverse Whitney trick, we obtain
a Whitney disk A and two more intersection points, ρ and q.

It is obvious from the construction that the immersions / and g are
regularly homotopic. An effect of this regular homotopy is that the group
ni(W—g(D2)) is isomorphic to a quotient group of Ki(W—f(D2)) by a normal
subgroup generated by [z, z™\. Indeed, %x(W-(g(J)2) U A)) s ^(W-f(D2)),
since W-(g(D2) \J A) is homeomorphic to W-(f(D2) \J arc) where arc
stands for an arc connecting f(D2) with the "finger" (Fig. 2, p. 182).
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σνν~Α Meridian ζ

Four-dimensional /

disk

"Finger"

Marked point

Fig. 1

Moreover, W-g(D2) results from attaching int A to W-(g(D2) U A),
which is homotopically equivalent to attaching a 2-handle cancelling a
meridian of A.

We now consider a neighbourhood of ρ (Fig. 3), where ζ and zw can be
homotopically mapped on a 2-torus, complementary to intersecting sheets of
an immersed disk g(D2). This torus is punctured by the disk A at exactly one
point, and also ζ and zw form a Ttj-basis of the punctured torus. Hence,
[z, z"] e n^W-igiD2) U A)) is a meridian of A, that is, W-g(D2) is
obtained from W— (g(D2) U A) by cancelling [z, z"], as was claimed.

Four-dimensional disk

Arc
Characteristic

torus

"Finger' c f f2? ^ /! (Whitney disk)

Fig. 2 Fig. 3

To complete the proof of Lemma 4.2, let us make use of the fact that the
group nx(W—f(D2) is perfect, and because of the simple-connectedness of W it
is generated by conjugates of z. Thus, in order to cancel %\(W—/(D2)) it
suffices to cancel z. Since n\(W—f(D2)) is perfect, we can represent ζ in the
form

= [2U>, Ζ Γ · ] " * ] .
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But since [ζ, z T = [ζ", ζ""], each of the commutators [ζ"·, ζν>], . . ., |z"*, zr* ]
can be cancelled by the construction described above. •

Remark. The two-dimensional torus appearing in the proof of Lemma 4.2 will
be called the characteristic torus of the corresponding double point of the
immersed disk/(.D2).

Lemma 4.3. Let W4 be a smooth simply-connected four-dimensional manifold
and let f : D2 -* W, i = 1, ..., n, be normal immersions such that frfj = 0 for
all i Φ j and there are classes β,- € H2(W) with / Γ β ; = 6 i ;. Then f are rel 9
regularly homotopic to disjoint normal immersions gt : D2 ->W such that

Proof. Consider a normal immersion f\. Using the preceding lemma, let us
rel 9 regularly deform f\ to g\ in such a way that %\{W—g\{D2)) — 0 and
g\ still remains a normal immersion. Then by the Hurewicz theorem
n2(W, W-g^D2)) £ H2{W, W-gaD2)). Since gl-f, = fvh = °, the map/2

represents 0 in H2(W, W—g\(D2)). Because of this, we can deform f2 rel 9 so
that it does not meet g\{D2). Once again using Lemma 4.2, we deform f2 rel 9
in W—gi(D2) to a normal immersion g2 with nx(W—g\(D2) \J g2(D2)) = 0.
Continuing this process, we deform/i, ...,/„ rel 9 to normal immersions
gu ..., gn such that for all i φ j we have gi(D2) Π gj{D2) = 0 and
ni(W-(gl(D2) U - U gn(D2)). = 0. •

Lemma 4.4. Let W4 be a smooth simply-connected four-dimensional manifold,
f: D2 -*• W a normal immersion, and Ν a regular neighbourhood off(D2) in W.
We put 5 + N = {bondary of Ν in W) and Q~N = Ν C\ W (Fig. 4).

Fig. 5
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Λ

Then in 9 Ν there are disjoint framed circles C\, ..., Cn such that if Ν is a
result of attaching 2-handles to Ν by Cu ··, Cn, then the pair (Ν; /(S1)) is
diffeomorphic to 2?4, a circle unknotted in 92?4. Here each circle C{ can be
chosen so as to meet exactly one characteristic torus transversally in d+N.
Framings of circles C\, ..., Cn can be chosen so as to be compatible with any
spinor structure of the manifold W.

Proof. We remark first that the differential topological type of the pair
(N, fiP2)) is completely determined by the number ρ of positive double points
and the number q of negative double points of the immersion /. Therefore it
suffices to prove the lemma for the case ρ = 1, q = 0 only, because the
general case can be reduced to that by means of obvious arguments using the
connected sum and orientation inversion operations. Thus, let / have a single
positive double point. Consider the model represented in Fig. 5. On this
model, inside S3 = d(B2xB2) there are represented the solid torus B2xSl, a
circle S embedded in int (B2x S1), a punctured two-dimensional torus
To C B2xS1 with boundary 92?2 χ t0, t0 e S1, and a circle C having no points
in common with S and intersecting To transversally at a single point.

Let A —- B" — Β" =τ: 5 1 χ — , 1 be an annulus lying in the second

factor 5 2 of the handle B2xB2. Consider the space Τ = To ij dTn χ

x | — , l ] U B~ x ô X-y- · It is not hard to verify that Γ is a two-

dimensional torus situated in ^(EPxA) = S2xSl. We will show that there
is a diffeomorphism of pairs (N,f(QD2)) s (B2xA, S) sending a characteristic
torus from inside d+N onto T. By virtue of the uniqueness of regular
neighbourhoods, in order to prove this it suffices to find in Β2 χ A a. normally
immersed two-dimensional disk D with exactly one double point such that
8Z> = S and Β2 χ A is an abstract regular neighbourhood of D. Let us cut
our model by a horizontal plane into two disks Β2 χ B\ and Β2 χ 2?L with
J5!,- Π 5l_ = S° C Sl. Extending this partition to B2xA, by the same

token we cut B2xA into two disks Β2 χ A± = Β2 χ (Β+ χ \4r Λ Γ) >

each of which contains one of the semicircles S± (S+ {J S- = S). Joining the
four cutting points on the semicircles S+, S- by two arcs Iu I2 that are

immersed in the disk Β2 χ \~, 11 χ S° in an unknotted way, we get two

links S+ and S-. Obviously, S+ is a trivial knot in 9(2? xA + ), bounding an
unknotted two-dimensional disk D+ in B2xA + . On the other hand, S- is a
Hopf link (Fig. 6), and boundaries of regular neighbourhoods of each
component are parallel to T. Hence there is a diffeomorphism

θ: Β2 χ Β*->- Β2 Χ A_,
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such that S- = Q(Sl χ 0 U Ο χ Sl) and T = θ(5 ! χ S1). Then
θ(5 2 χ Ο U Ο χ Β2) is the union of two immersed disks D\ and D2 with a
unique double point θ(0, Ο), the characteristic torus of which is T. Therefore,
starting with the two-dimensional disk D = D+ {J D: \J D2, we obtain a
diffeomorphism (N,f(D2)) s (B2xA, S) which maps a characteristic torus
from d+N onto T.

Fig. 6. Hopf links

Now we are able to prove the first two statements of the lemma. Indeed,

BA = B2xB2 is nothing but B2xA with a 2-handle Β" χ ~ Β2 attached

along the circle C = U χ <9ί — i ? 2 ) , which is isotopic in d(B χ A) to C. Like

C, the circle C" intersects Γ transversally at a single point. Finally, S is
obviously unknotted in S3.

In order to see that a framing of C can be made compatible with any
spinor structure of the manifold W, let us choose a ball neighbourhood B4 of
the double point of the immersion / in such a way that X = N—B4 is a
regular neighbourhood of part of the immersed disk Ρ = f(D2)—B4. Then
X £ Ρ χ D2, and any homeomorphism of X that is an automorphism of the
above £>2-bundle structure and is stationary on dP2xD2 extends to a
homeomorphism of Ν that is stationary on a neighbourhood of f(Sl) in QN.
It is not diffucult to choose an automorphism h such that the framing of the
circle h(C) is compatible with the given spinor structure. •

Proof of the Casson theorem 4.1. Let /i, ...,/„ : D2 ->• W satisfy the
conditions of the theorem. Let us approximate Fit i = 1, ..., n, by normal
immersions, which we will still denote by /}, and then with the help
of Lemma 4.3 deform f, regularly to normal immersions g, such that

gi(D2) Π gj(D2) = 0 for all i Φ j and π, (W - \Jgi (Z>2)) = 0.
1 = 1

Let Ν be a regular neighbourhood of the immersion of |J g{ (D2) in W.

We put W = W — N, d~N = Ν Π dW, 5 +Ν = W Π Ν. It is easy to
see that Ν consists of η connected components TV,, where N{ is a regular
neighbourhood of g,(D2). Let C\, ..., Cm be a family of circles in d+Ν
obtained by applying Lemma 4.4 successively to Nu ..., Nn. Since the
manifold W is simply-connected, there is a map h\ : (D2, S1) -*• (W, d+N)
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such that h\\Sl is a diffeomorphism of Sl onto C\. Let us construct a
manifold W attaching a 2-handle to W in an abstract way along the framed
circle C\ in dW, and define the relative homology intersection index
Λ , ' Ι ί , Ε Ζ as the absolute intersection index ^-fe, in W, where h\ = h\ \J
(core of 2-handle) in H2{W').

We show now that h\ can be modified in order to ensure that fc^/i, = 0 .
First of all, we modify h\ in order to make the intersection index hvh,x even.

If the manifold W is endowed with a spinor structure, then hi · hx is
automatically even because the framing of the circle C\ agrees with the spinor
struture on W, and therefore on W. If, on the contrary, W has no spinor
structure, then there is χ e H2{W) such that χ -χ is odd. By assumption, there
are classes β,· e H2(W), i = 1, ..., n, such that all the integers βί-βί are
even and βί-gj = 5U. If β = &ιβι + ... +bn$n, then (3· β is even
and (χ + β)·(χ + β) = χ-χ + 2χ·β + β·β is odd. Properly choosing the
class β, namely, putting fy = —x-g{, we get (χ + β)·& = 0 for all
j = 1, ..., n. This means that the class χ + β comes from x' e H2{W') and
x' · x' — (χ + β) · (χ + β) is odd. We use this class in order to modify
h\ e Hi(W', QW) in the case of odd intersection index Ιΐχ-hl, namely, we put
h-ί = hj_ -\- x'• Then 1ίΓΙιχ = fti-foi + 2ht-x' + x'-x' is an even integer.

Now we will achieve the equality /ΐχ/ΐχ = 0. Denoting by τ,· € Hj^ N)
the homology class of the characteristic torus from Lemma 4.4, 1 < i < m,
we find that x% • C} = 6i;·. For the sake of brevity we also denote by τ,· the
image of class τ,· in H2{W); then ν τ, = 0 and h^-x^ = δ1}. Thus, if
hx-hx = 2k, then

(hx — Arr,) · {hr — kTx) =^hl-hi — Ikh^x^ -f fe2T! · τΛ --̂- 0

and hence h\ — k%\ is a suitable modification oi h\.
Finally, using the Hurewicz theorem and the equality K-h2 = 0, let us

represent h\ by a normal immersion Λι : Ζ)2 -»· W with Λι(9£>2) = Cj. Since
g1.Cj. = δ1;., Lemma 4.2 (with τι instead of β) enables us to deform h\ so that
^(W'-h^D2)) = 0.

Now consider Ci. As before, we can find a map h2 : D2 -*• W such that
h2\dD2 : dD2 -*• C2 is a diffeomorphism, /i 2 ·^! = 0 and Α2·τ,· = δ2 7. Without
loss of generality we may assume that K-h, = 0 . Indeed, if h2·^ — —k, then
(/i2 + ktj)-(h2+ ktj) = h2-L· + ikK-x, + k2x,-x1 = 0 and(/?2 -f A-Tj)·/!., = 0.
Therefore, once again using the Hurewicz theorem and Lemma 4.2, we

find a normal immersion h2: D2 -* (W-h\(D2)) with h2(5D2) = C2,

*i(W'-ihiD1) U Λ2Φ2)) = 0 and ht-T, = b2j.
Proceeding in this way, we obtain disjoint normal immersions

m

A,, ..., hm: D2 ->• W with hj(dD2) = C,· and π, (W - U Λ* Φ 2 )) = 0. In

addition, we have homology classes τ, in H2(W) such that /ΐ{·τ;· = δ ·̂ and
τ {·τ ;· = 0 for all i, 7. This means that for the manifold W and the
immersions A,· all the conditions of Theorem 4.1 are fulfilled. Hence the
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construction described above can be repeated as many times as desired. As a
result, we obtain in ( F a sequence Ν = N{\), N(2), N(3), ... of compact
submanifolds of codimension zero (Fig. 7) with the following property. If we
put P(n) = N(l) U ... U N(n) and W (n) = W — Ρ {η), then N(n+ 1) is a
regular neighbourhood in the manifold W(n) of a finite union D(n) of disjoint
normally immersed disks whose boundaries form in d^N (n) = dN (n) — Ρ (η)
a family C(ri) of disjoint circles.

Fig. 7

We put V = \J Ρ (n). Then, by definition, a Casson handle Vt is a
η

connected component of V containing fi(Sl).
To complete the proof of Theorem 4.1, it remains only to verify the

homotopy properties of Vt. We omit this verification here, leaving it to the
reader (see [13]). •

The following remarkable corollary follows at once from Theorem 4.1.

Theorem 4.5. Let W4 be a simply-connected four-dimensional manifold and let

α, β e H2(W) be such that a - a = ( Ί β - 0 and a | i = 1. Then there is an

open set V C W having proper homotopy type of S2x S2 — pt and such that

α, β e im(H2(V) -> H2{W)).

Proof. We represent the homology classes α, β € H2(W) by maps
/ , g : S2 -> int W4 in general position and pick a four-dimensional disk
B4 C int W4 that forms a regular neighbourhood of a point of positive
transversal intersection of/(52) and g(S2). Cutting a disk Bi from W4, we
obtain a manifold Wf, = W1 — B" and maps/0) g0 : CD2, 3D2) -» (Wo, dW0)
corresponding to homology classes α, β e H2(WQ). It is obvious that
/„·£„ = α·β — 1 = 0 , /0·β = 1, gu-a - 1. α ·α --= β·β = U. Because of
this, applying Theorem 4.1 to maps/o and g0> we obtain open sets V\ and K2
and put V = B" U ^i U F2· •
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If the Casson handles Vi and V2 were diffeomorphic to open standard
2-handles, then such a V would be diffeomorphic to a submanifold of
S2xS2—pt and we could perform smooth four-dimensional surgery without
any restrictions. It is not known at present whether Casson handles are
diffeomorphic to standard 2-handles. However, at the end of 1981 Freedman
[24] managed to prove that Casson handles are homeomorphic to standard
2-handles. The rest of our survey is devoted to a presentation of this result of
Freedman and its applications.

§5. Geometric control theorem. Casson handle design

In this section we will give an intrinsic (not depending on an embedding in

a specific manifold) definition of Casson handles and formulate the so-called

geometric control theorem, which will play a central role in the presentation to

follow.

Definition 5.1. A kinky handle is a pair obtained from a standard 2-handle by
finitely many self-plumbings away from the attaching region. A self-plumbing
is an identification of D% χ D2 with D2 χ D2, where Do, D2 C D2 are disjoint
subdisks of the first factor disk D2 of the handle tfxD2.

Figure 8 shows a kinky handle with one self-plumbing. Figure 9 illustrates
a kinky handle with one positive and one negative self-plumbing. It is easy to
show that (1) a kinky handle k, as an absolute space, is a finite connected sum
# 5 1 χ D3; (2) as a pair, a kinky handle (k, d~k) is determined up to a
diffeomorphism by the numbers ρ of positive self-plumbings and η of negative
self-plumbings.

-f? k

Fig. 8

d k

Fig. 9
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We denote by C the core of a kinky handle k, that is, the image
under the self-plumbing π : D2 χ D2 -> k of the 2-handle core D2 χ 0.
In the case of one self-plumbing a pair (k, C) can be obtained from
(Β4; (Β4 Π (w, x)-plane) U {Β4 Π (j\ z)-plane)) by the attaching of a
1-handle pair (D1 χ D\ Dl Χ D1; S° Χ D3, S° Χ Dl) (Fig. 10). We observe that
the two planes (w, x) and (y, z) meet dB4 in a Hopf link (see Fig. 6) and that

there is a torus in dB4, Uw, x, y, z):w2 -f- ?/2 = -5- . a;2 -j- z2 = -̂ -J• , that

separates the components. In Fig. 10 the torus appears as 5° χ S° - 4
points. Its image in the kinky handle will be called the characteristic torus.

β " υ {1 -handle} Kinky handle

Fig. 10

Definition 5.2. Let us call a kinky handle (k, d~k) a one-stage tower. Then
an (n+l)-stage tower (Tn+\, 9~ΓΠ +ι) is a union of «-stage towers (Tn, d~Tn)
of kinky handles. These kinky handles are attached to the zero-framed link
whose circles represent 1-handles from Tn — Tn-\.

Each kinky handle (k, d~k) is a cylinder of a piecewise smooth map

p: (dk — d'k, d {ark)) -»- (C, dC).

If one kinky handle is attached to another, say (kl, d'k1) is attached to
(k, Q~k), and (L, d~L) is the resulting space, we can consider the connected
piecewise smooth subcomplex J = C \J Cx \J {map cylinder of 8C1}. It is
easy to see that (L, d~L) itself is a map cylinder of a piecewise smooth map

p' : (dL — d~k, d (d~k)) -*• (J, dC).

Definition 5.3. Let Tn be an η-stage tower. We denote by Γη~ the interior of
Tn united with Q~Tn. Let

T1 C T2 Q T3 C . . .

be inclusions of towers as specified by their inductive definition. Then there is
ι corresponding sequence of embeddings

ΤΪ Q T~2 C 7*8 C . . .

We define the Casson handle CH to be the direct limit ind lim Tf with
respect to the above inclusions, endowed with the direct limit topology.
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In what follows the symbol CH will stand for an arbitrary Casson handle.
It is not known at present if all Casson handles are diffeomorphic. At the
same time it is not difficult to prove the following statement.

Theorem 5.4. The interior of any Casson handle CH is diffeomorphic ίο Κ4. •

Starting with Definition 5.3, it is not difficult to show that any
Casson handle is an everywhere dense open subset of a standard 2-handle
(D2xD2, W2xD2) (for details, see [15]). In the simplest (unramified)
case CH s (D2xD2-(D2xdD2 \J C(W)), dD2xD2), where W is the
Whitehead continuum and C{W) is the cone over W. Thus among possible
compactifications of a CH there is a standard handle H. There is another
useful compactification—the so-called Shapiro—Bing compactification. We
will call a handle CH compactified according to Shapiro and Bing a Shapiro —
Bing handle and reserve the letter Κ for it. To describe a Shapiro —Bing
handle, we observe that a Casson handle is specified up to a diffeomorphism
by a so-called +-labelled tree, that is, an oriented finitely-branching tree with
base-point *. In addition, it is assumed that each edge of such a tree is given
a label + or —. Indeed, let Q be such a tree. To construct a Casson handle
CHQ from it, we assign to each vertex of β a kinky handle such that the self-
plumbing number of it equals the number of branches leaving the vertex. The
sign on each branch corresponds to the sign of the associated self-plumbing.

For a given ± -labelled tree Q we define a certain set WhQ. For this
purpose, we embed in D2 χ dD2 a ramified Whitehead link with one
component for every edge labelled by plus leaving *, and one mirror image
component for every edge labelled by minus leaving *. By thickening all the
circles of this link we obtain smoothly embedded solid tori with normal
framing.

We now consider a ±-labelled tree Q. Corresponding to each first level
vertex of Q we have already found normally framed solid tori embedded in
D2 χ 9D2. In each of these solid tori there is embedded a Whitehead link,
ramified according to the number of plus and minus labelled branches leaving
that vertex. Thickening the above Whitehead links, we obtain second level
normally framed solid tori. Then Q determines third level normally framed
solid tori, embedded in the second level, and so on. We denote by Xn the
disjoint closed solid tori forming the n-th level. With the help of Q we can
construct an infinite chain of inclusions

We observe that Xn is nothing but the attaching region of a disjoint union of
2-handles Wn, relatively embedded in (D2xD1, D2xQD2).
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Let Wh% = η Χη· ~Wh*> = Π Wn, let WhQ be the set of connected
» = 1 7 1 = 1

components of the space Wh^, and WliQ the set of connected components of
WfiQ. We define a Shapiro —Bing handle Κ (or, in more detail, KQ) as the

quotient space KQ = (D- χ D2iWhQ, dD'z X Z?2). This means that every
element from WhQ is declared a point and the resulting set is endowed with a
quotient topology. We put

d~KQ = dD~ X D- and Fr+ (KQ) = Fr (A'Q) — dD" X int Z)2.

Proposition 5.5. ΓΛε space F r + ( ^ e ) zs homeomorphic to D2x dD2/JVhQ.

Proof.

Fr+ (KQ) = 3+ (Z)2 X Zr-)/MQ Π a (Z)2 X D2) = Ζ)2 χ dD'IWhQ. •

Theorem 5.6 (Geometric control, [24]). Given any 6-iiage tower (T6, d~T6)
there is a Shapiro—Bing handle Κ and an embedding of it (K, d~K) C
C (Γβ, 3~T"6) satisfyng the following conditions:

(i) d-Κ = d~Ts,
(ii) Fr (Κ) Π dTe = d-Te.

This embedding is smooth on the Casson handle (K—Fr+(K), δ Κ). •

The geometric control theorem is of key importance for the proof of
Freedman's theorem claiming that any Casson handle (CH, d~CH) is
homeomorphic to the standard open 2-handle (D2 X R2, dD" χ R2).
Indeed, although the Casson handle CH still remains "terra incognita", its
compactification Κ has a well arranged frontier ¥τ+Κ = D2xQD2/Wh.
Theorem 5.6 enables us to begin investigation of CH by putting Fr+.Kr into
T6 C CHQ C KQ for an arbitrary Q. To be sure, we will describe very little
by means of this embedding, only a minor part of the handle CHQ in
codimension 1, but this is the very beginning. It turns out that we can embed
uncountably many such frontiers in CHQ (indexed by the Cantor continuum).
Together those frontiers are placed in a Casson handle so as to specify its
topology completely.

Let us proceed to arrange these frontiers coherently in a certain space 2>Q
depending on a tree Q. The space 2Q will be called a Casson handle design.

In order to construct 3sQ we need a new type of labelled tree. Such a tree
S = S ( 0 is constructed from a + -labelled tree Q by means of the following
procedure. There is a base point in S from which a single edge called
"decimal point" (.) emerges. From the second vertex of this tree two more
edges emerge, their ends give rise to two edges each, and so on. Thus, three
edges adjoin each vertex of the tree S, one edge entering and two edges
leaving the vertex. The edges are named by initial segments of infinite base 3
fractions corresponding to the standard representation of points of the Cantor
set CS C [0, 1] (Fig. 11). In what follows the symbol e will be reserved for
any finite base 3 fraction consisting of 0's and 2's. We observe that .0 and .00
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are different edges and therefore different fractions. The symbol c will denote
an infinite fraction of O's and 2's, that is, c e CS.

220

002

000

Fig. 11

Each edge e of the tree S carries a label xe, where xe is an ordered finite
disjoint union of 6-stage towers with an ordered collection of standard loops
generating the fundamental groups. The first requirement imposed upon the
labels xe is that if the base 3 fraction e' is formed by adding either a zero or
a two to the end of the base 3 fraction e, then the number of connected
components of xe· is equal to the total number of standard generators of
fundamental groups in all the components of xe. This condition means that
any branch of S, that is, any path beginning at the base point and heading
out toward infinity, is represented by some +-labelled tree Q'. Each edge in
the branch determines six stages of Q'. Equivalently we may assume that each
branch of S determines the Shapiro— Bing handle KQ·. The second
requirement on the labels xe is that the branch 5.222... represents the +-labelled
tree Q.

Let e be a finite base 3 fraction ending in 2. We denote by e° the fraction
that results from e when the last 2 is changed to 0, and by ek the fraction
2 . . . 2e°. We associate with the branch e° \J e1 U e2 \J ... a disjoint union

of Shapiro—Bing handles (JJK)e. The third and final condition on the labels
xe is that for every finite fraction e ending in 2 there is an embedding

{{IIK)e, d~ (ffK)e) C (τ8, 9-xe).

Let β be a labelled ± -tree. If a τ-labelled tree S satisfies the three above
requirements, then it is called the τ-labelled tree associated with Q. The
following important statements hold (for their proofs, see [24]).
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Proposition 5.7. For any ± -labelled tree Q there exists an associated τ-labelled
tree S. •

Proposition 5.8. Let {Qc} be a family of ±-labelled trees associated
with the branches Bc of the tree S{Q), c e CS. Then there is a family
of embeddings {ic} such that if c, c' e CS, c' < c, then

iC' (KQC>) ^ ic (KQC) CI KQ.222... = KQ, = KQ.

Also, if c' and c are base 3 fractions agreeing in the first η places, then the first
6(«+ 1) stages of ic' (KQC,) and ie {KQJ are identical. All the embeddings ic are
normalized at 8~ by requiring that

KQc Π dKQ = d~KQc η erKQ = d-KQ

for every c e CS. •

We are now able to construct the design @{S ( 0 ) or, for the sake of
brevity, 2)Q. It will be defined as the quotient space of a closed subset A of
the standard 2-handle Η = (D2xD2, dD2xD2). We give a collar of the
boundary of each factor disk of Η a. radial coordinate, running through values
from zero to one. We denote the closure of this collar by D', and let Sl

r be
the circle with radial coordinate r.

For every c ε CS C [0, 1] we have a branch Bc of S (Q) that determines a
± -labelled tree Qc. As explained earlier, Qc specifies a defining sequence X%
for a decomposition of a solid torus. In our coordinates for Η we will denote
this torus by D' χ Si. Each of the Xn is a disjoint union of embedded solid
tori. Suppose the expressions for c and d coincide at the first η places. Then
for k < 6(n + l) the collections X\ and X* will be isotopic after identifying
D' x 61?' and D' χ Si- Here it is convenient to re-index the sets in Xn by
putting Ά™Χη = oldXl(n+1). We do this without further indications.

Because of the stated connection between X» and Xn we can construct a
countable four-dimensional defining sequence Xn consisting of the disjoint
union of products of the form {solid torus χ interval}, whose intersection
Γ1 Xn is equal to y WhQ , where WhQ CZ D' X S\. We call the set

n = l ceCS C

[0, .1] U [.2, 1] the first complement, and (.1, .2) the first third. Further, we
call [0, .01] U [.02, 1] U [.2, .2] U [.22, 1] the second complement, and
(.01, .02) U (.21, 22) the second third. We continue this terminology
according to the standard construction of the Cantor set. We represent
D'xD2 as D'xD' U D'xS^lO, 1]. Then the set Zi = X?x[0, I] C
C D' χ iS1 x [0, 1] is defined as the product of the submanifold
X? C D2 x Sl x 0 by the segment [0, 1]. We put

X2 = x\ χ [o, .1] \JX? χ [.2,11·

Similarly, Xn is defined as the radial thickening of the n-th stage of the
defining sequence XZ, where e is a fraction of η places of 0's and 2's (e may
terminate in any number k < η of 0's).
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We put S3 = Μ (int XH) f] D' χ S1 x (fc-th third) = U ®x- We define

a set Λ jisjhe difference A = H-(fB U int D'xint D'). Then 3)Q = AIWhQ,
where WhQ is the collection of closed subsets of A consisting of the

oo

components of (J Xn- We endow 2Q with the quotient topology. It is
1

more convenient to consider A and 2Q as pairs {A, 8 A), (3>Q, 3 ®Q), where
d~A = d~@Q = dtfxD2 C H. We define F r + ( 0 c ) to be the image of
D2 χ 3.D2 under the natural projection. The family of embeddings {ic} from
Proposition 5.8 determines an embedding

/: (3)Q; d~S)Q, Fr+ (3JQ)) ->- (KQ; d~KQ, Fr1" (KQ)).

Now let us see how close we have approached our final goal—the
construction of a homeomorphism h: Η ->- CH, where H=(D2x Z)2, dD*- xD2)
is the standard open 2-handle. Let A = A — D2 χ dD2, 3) = ?ΰ —Fr+23 =
= AlWh and let g: a) -*• CH be the restriction to iO of the embedding
/: D -*• K. In order to construct the desired homeomorphism h: Η -ν CH,

we have to extend the map ;: λ -» 3) -^ Cif somehow to a map h':

/: i - i U 3) -^-> CH

Π

and then to try to approximate it by a homeomorphism. (Let us recall that a
map γ : X -* Υ of compact metric spaces is said to be approximable by
homeomorphisms if for every ε > 0 there is a homeomorphism h : X -»· Υ
with dist (v, &) = sup disty (γ (χ), & (χ)) < ε).

To realize this plan, we will act as follows. We denote by {gaps} the
collection of closures of the components of CH — g {3) and form the
quotient space Ci//{gaps} by declaring each gap to be a point. Then j
induces a map of quotient spaces

J: Η /{holes} -*• C#/{gaps},

where {holes} = (D' xD') U {closure of components of 38). The mapy is a
homeomorphism over a small neighbourhood of the subspace 3~C7//{gaps}.

Consider two maps a and b:

Η -TL, HI {holes} - 1 + C///{gaps} +£?±- CH.

Unfortunately there is no hope of approximating these maps by
homeomorphisms, since the inverse images a~x(x) and b~x(x) have



The topology of four-dimensional manifolds 195

non-vanishing fundamental groups. However, one can get rid of this
inconvenience. Indeed, suppose there is a set {disks} of disjoint topologically
flat disks embedded in A that stick together the fundamental groups of
subspaces from {holes}. Also suppose that the set {disks} can be chosen so
that its image under g ° η will still consist of disjoint topologically flat disks
embedded in CH that stick together the fundamental groups of subspaces
from {gaps}. We denote by {holes"1"} the collection of components of
{holes} U {disks}, and by {gaps"1"} the collection of components of
{gaps} U {disks}. If the set {disks} with such properties exists, then there are
defined maps

Η Λ. C///{gaps+} t-

which one can hope to approximate by homeomorphisms.

§6. Freedman's theorem and its corollaries

Thus, in order to reduce the problem of constructing a homeomorphism
h : Η -*• CH to approximation problems, we have to construct the set {disks}
of disjoint disks d{ embedded in A meeting the conditions listed above. They
will be constructed so that the boundaries dd{ lie in_Fr ($) and establish a
one-to-one correspondence with the components of <3. The subscript k in the

σο

disk notation d{ corresponds to the k in the decomposition 58 = \J 3*. The

index j numbers components of ©*; thus, ί®{ are the connected components
of the space $ k.

To construct the disks d{, it is useful to introduce the sets $ί-ι, j,-, which

are defined as the connected components of Xk-ι Π D' χ S1 χ (the closure of

the k-th middle third). Let Sif-i, n = (J 5θ£-ι. a. The spaces fB3

K and
3

.3?k-i, k are homeomorphic to S1 xD3 and any two 53/i and Sdi-ι, κ intersect
in D' χ dD2 χ (21+1)/2* C D' χ (collar dD2). These intersections are solid tori,
which we denote respectively by b{ and 6 J

H . t . The solid tori b'y,
and b{-lTt! are nothing but the intersections of Xk and Xk-\ with
D'xdD2x(2l+l)/2k. Thus y b{ c Si'-i, κ is a regular neighbourhood in

the solid torus of some iterated Whitehead link. Since each inclusion
Η C bl-i, if is null-homotopic, there is a collection of immersed disks Δ/Γ with
dAi = d, where c'; is the core of b(.

We can assume that each Δ/Γ Π ( U Η ) consists of a collar c{- on dA{ and
j<j'

several closed subdisks ω\· C Δ(. Let δ/i = Δ{ — gc{. The set {8j£} will be

endowed with a function θ taking values in the radial cordinate [0, 1] of the

product D'xdD2x[0, 1]; θ = Π θ * > w h e r e θ ^ : ( δ ^ 5 δ ό -^ ( [ 0 ' U- °)· A f t e r

this we define disks d{ by letting d{ = δκ + θί (δκ), where + is interpreted as
parallel translation in the radial [0, 1] coordinate.
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Before constructing Q{ we list the properties that the disks d{ must satisfy.
* o c def * ·

(1) Each disk d{ is embedded in (Λ — (J Si, m) = A — /,,. d Η.
l—l;

(2) Distinct disks do not intersect, that is, 4 Π 4 ' = 0 for k Φ k' and

(3) No disk d{ intersects any component ω of Wh in more than one point.

(4) No component ω ΕΞ Wh intersects more than one disk of the collection
{4s fe' <T k, j arbitrary}.

We will construct θ by induction. The base for the induction is k = — 1
with {dii} = 0 . Let us assume now that all θ{ have been defined so that
{d{ } satisfy conditions (1) —(4). The function θκ+iwill be defined as the limit
of a certain uniformly convergent sequence {,θί+ι, i = 0, 1, 2, . . .}, all the
terms of which are zero on the boundary <9δ(+ΐ·

We fix a particular value of j ; the value of k+ 1 is already fixed. By (1)
there is a real number r > 0 such that the previously constructed disks {d{}

do not come within distance r of 3?ι\;,*+ι. Let 53c. i,-+i = Xn Π (D' >< S1 χ

χ {points distant < r from the closed (k+ l)st middle third}), that is, SHHi k + 1

is a thickening of ft,tn· We consider the inverse image pattern on

Πδ=Πδ{ + 1 (Fig. 12).

Fig. 12. Arcs γ and γ' are inverse images of double curves of Πδ; the hatched region is

the inverse image of jjfejj.
j

Although the situation shown in Fig. 12 is the simplest, it is locally the
general case; one oan get rid of closed arc-preimages and triple points by a

small perturbation. The function Π ο θ£+ι = ο^+ι must be chosen so that the
j

following requirements are met.
(a) If γ, γ' are oriented arcs, paired under the immersion, then ο θ κ + 1 is

increasing on one of them and decreasing on the other.

(b) On hatched disks 06 f c 4 l assumes one of two values, + - ^ ( ( - 3 - ) ι /·'),
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where 0 < r' < min (>·,( — ) ) is some fixed element of CS~ (the Cantor

set with end points deleted).
(c) The values of the function <A--ri are in [—r, r].
Let o îf+i = δ|Γ+1 4- 06ic+i (δ)· According to (a), the disks 0 ^ 1 are

embedded, and by (c) they are disjoint from the previously constructed disks.
Condition (b) implies that od>m CZ A and that odi,+i Π Λ+ι = 0 . For the
second assertion we note that the projection

π: D' X 3D- χ [0,1J _» /)' χ 3D- Χ 2 ;",,^ '

carries the subspace

onto ii^{+]- To omit 53/. ;+i, / 5^ A- + 1, it is only necessary to make sure
j

that ο θ κ + 1 lifts to CS~ level, that is, the intersection δ f\ η {Si. z+1) Π δ η πL

—the inverse image of Π H a (Fig- 12). Unfortunately Π^ί^ι does not
j 0

satistfy the conditions (3) and (4).

Let us introduce a sub-induction, assuming that the maps ? θ have been

defined so that (Ι) {Πς^ΐτ+ι} a r e disjoint embeddings onto ,53λ. k+1 f\ ( —/,f+1)
i

and (II) all the intersections of \~[ d{.ti with XQ+|1+1 are horizontal, that is,

have constant radial coordinates.
We will construct the map q+iQk+1 with the corresponding properties.

(Below we omit the subscript k+ 1 in the notation q+\Qk+\-) Let

0 < εκ-n < in in j-y- min {| v\+1 — v!:il\, i, / <Ξ {1, . . ., nk,i} with i Φ /}, ek/2\ .

We now change qQ to ρ θ χ (Χς+(,ν1) to make 9 , ιθ κ + 1 assume distinct
constant values from CS~ on the components of the set 9Θ - 1 (Xq^+i) and
sup dist (qQ, ,+1θ) < eic+i. Finding the nearby new values is possible,
since the Cantor set is a perfect set. Also there is no difficulty in preserving
property (I). The set ^ θ " " 1 (Λ+i) is contained in qO"1 (Xq+K+i) — 5Θ"Χ (Ar

QtIf+2).
Since dist (,,θ (S), JK-+I) > 0, the number ει·-ι can be chosen so that

,+ιθ'1 (Λ+ι) = 0 -
Thus by our sub-induction for any q ^ 0 we obtain a sequence {9θκ+ι}

satisfying (I) and (II). Since these sequences are uniformly convergent, there
are continuous limiting functions {Q{+i}. These functions satisfy (I). The
limiting disks of {d{^} are graphs over flat disks and thus flat, although not
smooth.
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We_ now return to the main induction. The disks {di+1} can be separated
into iPk+i, k+2 and hence satisfy the conditions (1) and (2). Because of this
separation, the condition (4) could only fail if the two disks d(+1 and άζ+ι meet

the same component ω 6Ξ ffih. This effect and any possible violation of (3) are
ruled out simultaneously by showing that \\ θ(+ 1 = θ κ + 1 becomes an injection

j

6fchl | Γ: Γ-*- [0, 1] when restricted to the set Γ of points ρ such that

{g9fc+i (p), q = 0, 1, 2, . . .} is infinite. The latter remark will suffice, since

any point carried from δ + θ(δ) to Wh* must be, by construction, a limit
point.

The elements of Γ are indexed by the infinite branches γ of a certain tree S.
We have θκ+1 (γ) = Σν, where the values of ο depend on the choice of a
branch γ. If γ Φ Υ, then these sums are different, so that θκ + 1 (γ) Φ- Qk+i (ν)·

This completes the main induction step. We now set θ = Π Qk and
k

d = Π δί + θ* (δ£). As a result, we obtain the desired family of disjointly
I r . y

embedded disks killing the fundamental groups of the subspaces from the set
{holes}.

As explained at the end of preceding section, after having constructed the
set of embedded disks {di}, we get at once the maps

β .1+ CH/{gaps+} ^~ CH,

which are homeomorphisms near the boundary 9~. The following
approximation theorems hold.

Theorem 6.1 (Edwards and Kirby, see [13]). Let π : Μ" -» Ν" be a continuous
map between closed topological manifolds of an arbitrary dimension n. Suppose
that π is approximable by homeomorphisms and that for some closed set C C Ν
the restriction n | n - 1 ( C ) : n~l(C) -*• C is already a homeomorphism. Then
there is a homeomorphism h : Mn -*• Nn that coincides with π on n~i(C) and
approximates the map π. •

Theorem 6.2 (Edwards, see [24]). The map α : Η -> CH/{gaps+} is
approximable by homeomorphisms. Hence for^ any Casson handle CH there is a
homeomorphism of pairs CH/{gaps+} Sx o p H. •

Theorem 6.3 (Freedman [24]). Let f: S" -• S" be a continuous map of an
η-dimensional sphere onto itself. Suppose that for all ε > 0 there are only
finitely many sets f ~ '(pt) having diameter greater than ε and that the singular
set S(f) = {x e Sn : card(/ ~\x)) > 1} is nowhere dense in Sn. Then f is
approximable by homeomorphisms. •
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Now we are in a position to prove the central result of the present survey.

Theorem 6.4 (Freedman [24]). For any Casson handle CH there is a
homeomorphism of pairs Η =τΟρ CH. •

Proof. Let 3i be the design of the Casson handle CH. The attaching region
9~S> = dD2xD2 of the design 2 has a collar 9Z>2 χ Ζ>2 χ [Ο, ε]. The
embedding g : 2 -»· CH shows that d~CH also has a closed collar
PF = QD2xD2x[0, ε] with 8Z)2xZ>2xO = d~CH that is disjoint with
subspaces from {gaps}. By Theorem 5.4, the interior CH—d~H is
homeomorphic (actually, diffeomorphic) to KJ. By Theorem 6.2, the
difference C7//{gaps+]—6~(Cif/{gaps + }) is also homeomorphic to R4.
Consider the proper map of pairs β : CH -»· Ci//{gaps+}. Composing β with
the homeomorphism given by Theorem 6.2, we obtain a map of pairs
β : CH -*• H. Since W Π {gaps + } = 0 , β IFF is a homeomorphism and

!

We now delete the attaching regions and form one-point compactifications
of both image and inverse image. As a result, β turns into a map / : S4 -* S4

between the one-point compactifications of spaces homeomorphic to R4.
We now verify that / satisfies the hypothesis of Theorem 6.3. According to

the geometric control theorem, only finitely many subsets from {gaps} have
diameter larger than any fixed ε > 0. Further, we have constructed the disks

d{ for an arbitrary subset of {gaps} within the blocks 53κ-ι. κ whose diameters
also tend to zero. Consequently, the diameter of the disks g <- π (d£) d CH
also tends to zero. Thus, only finitely many subsets from {gaps} have
diameter greater than ε > 0.

We now observe that the singular set S (β) of β is contained in the singular
set S (a) of a, S (β) C <S(a). (Their difference is equal to $(S{A-®))) We
wish to prove that S(ct) is nowhere dense. For this purpose we denote by
D*(f) the set D* (/) = ; ί f'1 (x) and show that if ρ e D* (a) — D* (a) is a

eS(!)

limit point, then there are points q in Η — D* (a) that are arbitrarily close
to p. By the construction of the disks d{, each element S i U d{ <= {holes+}
is contained in the block SjJ-i, i-. Therefore, any limit point ρ is approached
by a sequence 5bl-i, κ as k tends to infinity. Thus ρ e Wh*. Since
Ρ φ D* (α), it will have radial coordinates lying in CS~, the Cantor set minus
end points. But on the level r only a one-dimensional set lies in D* (a).
Hence ρ may be approximated by points q e (r = level — D* (a)).

Applying Theorem 6.3, we conclude that the map/ i s approximate by
homeomorphisms. Let C denote the image under one-point compactification
of the half-open collar C = D2 X IR X (0, ε] ClCH — d'CH. Since
/ : W -*• f(W) is a homeomorphism, /1C maps C homeomorphically onto its
image, that i s ,/ ~ '(/(C)) = C. Hence, setting/(C) = C, we can apply
Theorem 6.1. As a result, we obtain a homeomorphsm h : S4 ->• S4 meeting
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the condition h\C = f\C. In particular, h(oo) = oo, where oo is the
compactifying point.

We now remove the compactifying points from the spheres S4. This results
in a homeomorphism h\ : CH—d~CH -»· H—Q~H, which coincides wi th/on
C~. Splicing the homeomorphisms/|C and h\CH—Q~CH together on C " ,
we obtain the required homeomorphism of pairs

h: f | W U h | Sl — {oo}: (CH, d'H) -> (Η, d~H). •

As the first corollary of Freedman's theorem we obtain the following
statement.

Theorem 6.5. Let W4 be a simply-connected four-dimensional manifold and let
α, β e H2{W) be such that a-a == β·β = 0 and α·£> = 1. Then W4 is
homeomorphic to Wl S^TOP β 7 4 # S- χ Sz, where W4 is simply-connected. •

The meaning of Theorem 6.5 is that in dimension four the topological
Whitney trick has begun working. Hence, we obtain by standard means the
theorem on five-dimensional topological Λ-cobordism.

Theorem 6.6. Let (W5; Μ, Μ') be a simply-connected smooth five-dimensional
h-cobordism. Then W is homeomorphic to Mx[0, 1]. Moreover, this
homeomorphism can be smoothed over the complement to a flat four-dimensional
cell in M. •

Theorem 6.6 has a non-compact version, but its proof is quite non-trivial
and cumbersome. Here we give only the formulation of it.

Theorem 6.7 (Freedman [24]). Let (W; V, V) be a simply-connected smooth
proper h-cobordism of dimension 5, where W is simply-connected at infinity. If
the set C = dW— (V (J V) is non-empty, then we assume also that C already
has product structure C =Difi{C Π V)xl. Then W is homeomorphic to Vxl
(extending the product structure on C). •

Theorem 6.8. Every topological four-dimensional manifold V that is properly
homotopically equivalent to (R4 is homeomorphic to R4.

Proof. It follows from the smoothing theorem [31], [32] that for any
0 < η < oo a non-compact η-dimensional topological manifold V can be
smoothed if and only if the classifying map / : V -*• Β Τορ(η) of its
topological tangent microbundle admits a lifting

#Top(«).

In spite of the fact that for η = 4 the structure of the space Β Τορ(4) is not
known, the contractible manifold V can have no obstruction to the lifting.
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Thus, every manifold V that is properly homotopically equivalent to R4

admits a smoothing V-z-
Now we will construct a proper A-cobordism W between V% and R4. To

do this.we set (W; Vs, R4) as; (ΚΣ χ [0, 1)) (J 5 4 X 1; F 2 X 0, 5 4 x 1),
where 5 4 is the interior of smooth ball in R4. Applying Theorem 6.7 on
proper Λ-cobordism, we find that R4 s T o p I's =τ Ο ρ ^> a s desired. •

Theorem 6.9. ZTvery three-dimensional manifold Σ 3 wiift integer homology of a
three-dimensional sphere is the boundary of a contractible topological four-
dimensional manifold Δ4.

Proof. In the paper [23] Freedman constructed a proper smooth embedding of
the punctured Poincare homology sphere P~ = P—pt to a smooth manifold
V that is properly homotopically equivalent to R4. In an exactly similar
way it is proved that any punctured three-dimensional homology sphere
Σ~ = Σ—pt can be smoothly embedded in the same manifold. By
Theorem 6.8 any such homology sphere Σ~ can be topologically flatly
embedded in R4· A well-known theorem of Kirby and Chernavskii [29], [5]
states that, apart from surfaces in three-dimensional manifolds, no topological
embedding of codimension 1 can have isolated points at which it is not locally
flat. Hence by taking the one-point compactification of the pair (P.4. Σ") we
obtain a topologically flat embedding Σ c, S4, since it is evidently flat apart
from the compactification point.

Further, the embedding P~ c> V from [23] separates V into two
contractible pieces. The same is true also for Σ" c_» V ^ T o p R4. Hence,
Σ c, S4 is the boundary of a topological contractible four-dimensional
manifold, as required. •

§7. Classification of simply-connected topological four-dimensional manifolds

Definition. A manifold Μ is said to be almost smooth if it can be endowed
with a smooth structure on a complement to a point.

In 1982 Quinn [40] showed that every simply-connected closed topological
four-dimensional manifold is almost smooth. This observation enables us to
use arguments from smooth topology while investigating four-dimensional
manifolds.

The central result of this section is the following classification theorem.

Theorem 7.1 (Freedman [24]).
{Existence.) For a given integral non-degenerate quadratic form L there is a
closed simply-connected topological four-dimensional manifold Μ that realizes L
as the intersection form

L: H2 (M) X H% (M) -*- Z.

(Uniqueness.) If the form L is even, then any two closed simply-connected
topological four-dimensional manifolds Μ and M' realizing L are homeomorphic.
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If L is odd, then there are exactly two non-homeomorphic closed simply-
connected topological four-dimensional manifolds Μ and M' realizing L. One of
these manifolds Μ has vanishing Kirby — Siebenmann obstruction {and hence
MxS1 is smoothable), and the other manifold M' has non-vanishing Kirby —
Siebenmann obstruction (in this case M'xS1 is non-smoothable).

The proof of the classification theorem is based on the following classical
result of Milnor.

Theorem 7.2. For every symmetric integral unimodular martrix A = (my) there
is a smooth four-dimensional manifold N4 with boundary such that

(i) N4 is simply-connected;
(ii) the matrix of the intersection form

is congruent to the matrix A;
(iii) the boundary dN4 is a three-dimensional homology-sphere. •

Proof of the classification Theorem 7.1:
Existence. Once a basis of two-dimensional homology is chosen, the form L
determines a symmetric integral unimodular matrix A^. Applying Theorem 7.2,
we can associate with this matrix a smooth simply-connected four-dimensional
manifold Ν with boundary dN equal to the three-dimensional homology sphere
Σ = QN. By Theorem 6.9, Σ = δΔ4, where Δ is a compact contractible
topological manifold. We set Μ = Ν Us Δ4. Easy calculations based on the
theorems of Van Kampen and Mayer-Vietoris establish that Μ is simply-
connected and has L as the intersection form. Finally, the inclusion
Λ" c+ Μ — χ, where χ is a point of Δ4, is a homotopy equivalence. Since Μ
is smooth, there is a lifting of the classifying map for the topological tangent
bundle of N:

t

. T ^ _ _ ^ DO (4)

Λ" >- Β Top (4).

Since λ' c, Μ — χ is a homotopy equivalence, the above lifting extends to

T j w - T , DO (4)

τΑί-.ν
Μ — χ y β Top (4),

that is, M—x can be given a smooth structure. Thus, beginning with a
symmetric integral unimodular form L, we have constructed an almost-smooth
manifold Μ with LM — L.
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Uniqueness. Let Μ and M' be closed simply-connected topological four-
dimensional manifolds, both having the same intersection form L. According
to Quinn they are almost smooth. Then by Theorem 2.1 there is a homotopy
equivalence/: Μ -* Μ'. (The fact that Μ and M' are almost smooth rather
than smooth manifolds does not affect the proof of Theorem 2.1.) Compare
the stable normal bundles of Μ and M'. Their difference is an element of
[M, G/Top]. Consider the fibration

G/PL -v G /Top -ν Β (Top /PL).

The obstruction to lifting an element from [M, C?/Top] to [M, G/PL]
is nothing but the Kirby — Siebenmann obstruction (M), which lies in
[Μ, Β (Top/PL)) ^ [Μ, Κ (2/2, 4)] =* Hi (M; 2/2) -s 2/2. If this
obstruction vanishes, then arguments similar to those used in the proof of the
Novikov—Wall Theorem 2.2 show that/ i s topologically A-cobordant to the
identity map idM. Let W = W—arc, where arc is a flat arc joining non-
smoothable points of Μ and M'. It is easily seen that (W; A/' —pt, M—pt)
is a proper simply-connected topological A-cobordism, simply-connected at
infinity. It has a smooth structure at each end, and the only obstruction to
extension of the structure lies in the zero group

Hl (W, dW; 2/2) ^H3 (M — pt) ^ Η* (Μ) ^ Ηχ (Μ) ^ 0.

Therefore the smooth structure extends to the whole of W. Applying
Theorem 6.7 to the proper A-cobordism (W; M'—pt, M—pt), we obtain a
homeomorphism (AT— pt) = x o p {M—pt), which extends to a homeomorphism
between the one-point compactifications M' Sxop M.

In the case where L is even, Μ and M' are spinor manifolds. According
to [43] the obstruction κ(Μ) for a closed spinor four-dimensional manifold Μ

equals %(M) = -i- σ (Μ) mod 2. Thus, for a class [/] € [M, B(Top/PL)] we

have [/] = — [σ (Μ) — σ (M')'J mod 2 =-- U. This explains why in the even case

there is only one manifold.
In the case where L is of type I and indefinite, by Serre's Thoerem 1.2 it is

isomorphic to nl φ m{—I). One of the manifolds realizing this form is a
smooth manifold Ν = (#= CP2) # ( # — CP2)· Hence it is sufficient to

construct a non-smooth manifold realizing L. For if such a manifold is
constructed, then there are at least two classes of homeomorphic manifolds
realizing L. There cannot be more than two classes, because for any
homotopy equivalence/: M' -»· M" the element </> e [AT, Β (G/PL)} is
non-zero only if one manifold has zero and the other non-zero Kirby —
Siebenmann obstruction.

In order to construct a non-smooth manifold realizing nl φ »»(—/) one
has to replace in Ν one C^ 2 smooth connected summand by a non-smooth
manifold of the same homotopy type. For this purpose we consider in the
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three-dimensional sphere S3 that bounds the four-ball B4 a torus knot of type
(2, 3) (trifolium) with framing +1 and attach along it a standard 2-handle H2

to B4. According to [33], d(B4 U H2) is a three-dimensional Poincare
homology sphere P3. Pasting it with the help of Theorem 6.9 to the
contractible topological manifold Δ4, we obtain a non-smoothable closed four-
dimensional manifold Ch4 having the homotopy type of C-P2-

It remains to consider odd definite intersection forms L only. The
preceding considerations reduce the realization problem for L to the
construction of two framed links ω0 and α>ι with R(dK(u>o)) = 0, R(dK(a>i)) - 1,
both with matrix representing L. Here Κ(ω() is the manifold with boundary
obtained by attaching 2-handles to the four-ball relative to ω,·, and
R e Z/2 is the Rokhlin invariant [33]. Pasting the boundaries of ΑΓ(ω,·) to
contractible topological manifolds, we obtain two almost smooth simply-
connected manifolds with zero and non-zero Kirby—Siebenmann obstruction,
as required. •

We single out a special case of Theorem 7.1 as an assertion.

Theorem 7.3 (the topological four-dimensional Poincare conjecture). If Σ 4 is a
topological four-dimensional manifold homotopy equivalent to the standard sphere
S4, then Σ 4 is homeomorphic to S4. •

Another important special case of Theorem 7.1 is the following.

Theorem 7.4. There is a closed simply-connected almost parallelizable, almost
smooth four-dimensional manifold Rh4 with intersection matrix E%. •

Corollary 7.5. Either the manifold Rh4 is not homeomorphic to a polyhedron or
the three-dimensional Poincare conjecture is false.

Proof. Suppose Rh4 is a simplicial polyhedron. By Rokhlin's Theorem 1.3
Rh4 fails to be a PL-manifold, hence there is at least one vertex whose link Ik
is not a combinatorial triangulation of the standard sphere S3. At the same
time the link Ik is a three-dimensional homology manifold with the homotopy
type of S3. But all three-dimensional homology manifolds are manifolds;
hence, Ik is a three-dimensional homotopy sphere. If Ik = τΟρ S3, then
Moise's thorem [37] tells us that Ik SPL S3. So the assumption that Rh4 is
polyhedral leads to the conclusion that some link Ik is a three-dimensional
homotopy sphere not homeomorphic to S3. •

CHAPTER II

GEOMETRIC METHODS

In this chapter we consider smooth four-dimensional manifolds. The
approach used by Freedman does not enable us to understand what kinds of
integral unimodular forms can be realized as intersection forms of smooth
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four-dimensional manifolds. Very strong and unexpected results in that
direction were obtained in 1982 by Donaldson. He proved that if the
intersection form Lx of a smooth simply-connected four-dimensional manifold
is positive definite, then it reduces over Ζ to a sum of squares. Perhaps the
most astonishing thing about Donaldson's work is that a theorem of
topological nature is proved by involving ideas and methods from differenital
geometry and mathematical physics—the gauge field theory.

§1. Gauge fields and Donaldson's theorem

Let G be a Lie group with Lie algebra Alg(G), let X be a smooth
manifold, and (Ρ, π, X, G) a principal G-bundle over X. Suppose that the
group G acts on the manifold Ρ on the left and let Lg : Ρ -> Ρ (g e G)
denote this action.

Definition 1.1. A connection in the principal bundle (P, %, X, G) is a 1-form
A : TP -> Alg(G) on Ρ with values in the Lie algebra Alg(G) satisfying the
following conditions:

(i) L*A = Ad(g) ° A\
(ii) if Υ ε Alg(G) is an element of the Lie algebra Alg(G) and 7 is a

vector field on Ρ given by the formula

then

A (Y) = Y.

The connection A determines a decomposition TP — T0P φ ThP of the
tangent space to Ρ into vertical and horizontal vectors if we put ThP = ker A.

Let pr/, denote the projection of TP onto the horizontal subbundle ThP.
The form

F (A)(tu i2) = dA (prh (i,), Pr,, (i2)), *„ f2 <= TP,

is called the curvature of the connection A.
We now consider the adjoint representation Ad : G -+ GL(Alg(G)) of the

group G in the vector space Alg(G) and denote by

9 = Ρ x A d Alg(G)

the vector bundle over X associated with this representation. Then F{A) can
be viewed as a form in Ω2 (9) = Γ (Λ2 (Χ)) ® Γ (g). Indeed, let χ e X. We
choose a basis tl e TX(X) of the tangent space at the point χ and denote
by e4 e ft (X) the dual basis of the cotangent space. We now take a point
ρ e Ρ meeting the condition π (ρ) = χ and choose horizontal vectors
?* e Tv (P) for which π* (Γ*) = t{. We put

F (A) (x) = %F (A) (t\ Ρ)
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It is not difficult to see that F(A)(x) is well defined and is a 2-form on X with
values in 9.

Remark. The curvature form F (Α) 6Ξ Ω2 (3) is often called a gauge field, and
the corresponding connection A a gauge potential.

A morphism of a principal bundle Ρ is a diffeomorphism f : Ρ -* Ρ
compatible with the action of G, that is, commuting with the map Lg:

j o L 8 = Lg ο /.

This diffeomorphism sends fibres of the principal map Ρ to fibres and in this
way induces a diffeomorphism/: X -*• X of the base. If / = id^, then/is
called a gauge transformation.

The following statements are easy to verify.

Proposition 1.1. Let f : Ρ —• Ρ be a gauge transformation and A a connection.
Then f*A is a connection as well.

Proposition 1.2. Let AQ be a fixed connection in a principal bundle (Ρ, π, Χ, G).
Then an arbitrary connection A in this bundle can be represented as A = Ao + h,
where h <= Ω1 (3) = Γ ( Δ1 (X)) (g) Γ (οι). In other words, the set si of all
connections in the bundle Ρ bears an affine space structure.

According to Proposition 1.2, the set of gauge transformations forms a
group <$ acting on the affine space of connections si'.

Let Ε be the vector bundle associated with the principal bundle P. Then
the connection A determines a first order differential operator

dA: Ω" (Ε) -π- Ω1 (Ε),

called the covariant derivative. If Ua is a trivializing neighbourhood in X (that
is, Ε \ua c± Ua X V) and Aa is the restriction of the form A to Ua (that is,

Aa: Ua ->• T* (Ua) \x; Alg (G)), then the covariant derivative is given by the
operator d+Aa. The operator d^ extends to an operator

dA: Ω'1 (£•) ->• Ω?ι+1 (Ε), α ιχ) s »· do Jj s + α Λ <^,

where α e Γ(Α"(χ)), s e Γ(Ε).
Now let X be an oriented Riemannian four-dimensional manifold and

dx '• ΩΡ(Ε) -*• Clp+l(E) the covariant derivative operator. The metric on X
determines a formally adjoint operator d*A = * dA *: Ω^+1 (Ε) -*- Ω'' (£), where
* is the Hodge operator. For all connections A e si the so-called Bianchi
identity is valid: dAF {A) = 0. The equation d*AF (A) = 0(which is far from
being valid for all connections) is called the Yang-Mills equation.

A connection A on Ρ is called self-dual if F (A) — * F (A), and anti-self-
dual if F {A) = — * F (A). In both these cases

d*AF (A) = *dA* F (A) = + * c^F (4) = 0
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by virtue of the Bianchi identity. Hence (anti-) self-dual connections
automatically satisfy the Yang-Mills equations.

The Yang-Mills equations describe critical points of the Yang-Mills (action)
functional

Self-dual connections provide absolute minima of this functional. If
G = SU(2), then YM(A) = -8n 2 c 2 (P), where c2(P) is the second Chern class
of the associated vector bundle of rank 2.

The existence of self-dual connections was proved under rather general
conditions by Taubes [48]. Let X be a compact oriented Riemannian four-
dimensional manifold with a positive definite intersection form Lx, and let Ρ
be a principal Si7(2)-bundle over X with c2(P) < 0. Then Ρ admits an
irreducible self-dual connection.

As an example of self-dual connection, consider X = R4 and G = SU(2).
Then in terms of quaternionic coordinates χ e= W = R* making use of the
identification SU ( 2 ) ^ Im H, one can show that a 1-instanton solution of
self-dual equations is given by the formula [11]

xd3. \ . . „ , . . Wdx I\dx

) W l t h F ^ = WTUW

with action 8π2.

Theorem 1.3. Let A be a self-dual SU(2)-connection on R4 with action 8π2.
Then up to a gauge transformation and a parallel transport on R\ the
connection A equals Αχ for some λ £Ε R.

The Yang-Mills functional and equations are invariant under a conformal
change of metric on X and under gauge transformations on P. The set of
classes of solutions of the Yang-Mills equations with respect to gauge
invariance is called the moduli space and denoted by M. Investigation of the
topological structure of the moduli space led Donaldson to establishing
remarkable links between the geometry of gauge theories and the topology of
smooth four-dimensional manifolds.

Theorem 1.4 (Donaldson [14]). Let X be a compact smooth simply-connected
oriented four-dimensional manifold with a positve definite intersection form Q on
If2 (X; Z). Then there is an integral basis in Η2 (Χ; Ζ) such that

Q (u,u) = u\ + «4 + . . . + u?, r = rk H°- (X; Z).

Proof of Theorem 1.4. Let r = rk Η2 (Χ; Ζ) and

2n = # { K E IP {X; Z): <? («, ") = 1}·



208 Yu.P. Solov'ev

The proof consists in constructing an oriented cobordism between X and η
copies of the complex projective plane £P". (Section 2 is devoted to this
construction.) Let ρ of these C-P2 carry canonical orientation given by the
complex structure, and q = n—p the opposite orientation. Then by virtue of
the invariance of signature relative to the cobordism we have

r = σ (X) = (ρ - q)-o (CP 2 ) = Ρ - g < n.

Let {±xu ±z2 ±xn} = {u <Ξ H2 (X; Z): Q (u, u) = 1}. Then
Q (xt, Xj) e Ζ and by virtue of the Cauchy — Buniakowski inequality
\Q(xi, xj)\ < 1 for i Φ j . Hence, Q(xit Xj) = 0 for i Φ j , that is, {xu ..., xn}
are orthogonal. Hence it follows that η ^ r. It follows from the inequalities
r < η and η < r that η = r and {xj, ..., xn} is an orthonormal basis for
H2 (Z; Z). Thus, for u e Η* (Χ; Ζ)

Tl J1

u= S <? (". art) *i = Σ " Λ .

where U i e Z and {xi, ..., xn} is a basis for Η2 (Χ; Ζ)· Hence,
η η η η η

Q (u, u) = Q ( S "Λ» 2J "Λ') = Σ UiUjQ (Xi, xj) = ^ ¥ A ) = S ^
i=l jf=i i,J=l i,j=l t=l

as required. •

§2. Construction of cobordism

The cobordism needed for the proof of Donaldson's theorem results from
the moduli space of self-dual connections.

Let A' be a compact smooth simply-connected four-dimensional manifold
with positive definite intersection form. Let us fix a Riemannian metric on X
and denote by Ρ the principal Si7(2)-bundle on X with c2(P) = — 1. Using
the covariant derivative of a fixed smooth connection Ao in the bundle P, we
can define Sobolev spaces L^(V) of sections of an arbitrary associated vector
bundle V. We denote by JJ/ the affine space of connections on P. If a
connection Ao is chosen, then any element A e s/ is of the form A = Ao + h,
where h e 0}{s). Therefore, when considering sections h f= L\ (Ω1 (9)) we
endow the space of connections with a topology. Further, the group of gauge
transformations ^ is isomorphic to the groups of sections T(Px A d SU(2)). By
taking Z^-sections, we obtain a Banach—Lie group of gauge transformations 3?,
which acts smoothly on the affine space si according to the formula

We denote by 38 the quotient space s//9\ let ρ : si -* 0S be the natural
projection and ρ {A) - \A\

We recall that a connection on a bundle Ρ is called reducible if its
holonomy group is a proper subgroup of SU(2). Since X is simply-connected
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and Ρ is non-trivial, the only possible reduction is the reduction on the
subgroup {7(1) C 5"i7(2). We denote by ΤΛ C ^ the subgroup of covariantly
constant sections corresponding to the connection A. Then A is reducible if
and only if TA £ 17(1). Equivalence classes of irreducible connections form
an open subset 53* (Z fS. Using the implicit function theorem for Banach
spaces, it is not difficult to obtain the following statement.

Theorem 2.1.

(1) The set 5a' is a Hausdorff space.

(2) 9iS * is a Banach manifold whose charts are the slices

Τ A, e = {4 + α | <£e = 0, || α | | / 2 < ε}

of the action of the gauge group Φ.
(3) The map p: p'1 ($*) -»- 3d* is a principal &/{±l}-bundle.
(4) If the connection A is reducible, then YA acts on ΤΑε and the map

TA.,ZITA -» 53 is a homeomorphism onto a neighbourhood of an element [A] e S3
that is smooth outside the set of fixed points.

We now denote by Μ the subspace of equivalence classes of self-dual
connections on Ρ and call it the moduli space. If A e 5S is reducible to a
connection in the principal i/(l)-bundle Q C P, then, because π\(Χ) = 0, the
equivalence class [Λ] is completely determined by the curvature F(A) e Ω2. If
A is self-dual, then F(A) is a self-dual closed 2-form. In other words,

d-F {A) = 0 and d*F (A) = * d * F (A) = 0,

because * F (A) — F (A). Hence, the form .F(.4) is harmonic and by
virtue of Hodge's theorem it is determined by its cohomology class
2mci(Q). The reduction to i7(l) is well defined modulo the Weyl group;
consequently, the element [Λ] e Jt is described by the cohomology classes
±C\(Q). Since c2(P) = — C\{Q)2 = —1, there are exactly η distinct
points in the space Ji that represent self-dual connections, where

n = -1- # {ΙΚ=ΞΙΡ (Χ; Ζ)| Lx (H, U)=-4}. According to Taubes' theorem, there

are also irreducible connections on X.
We now consider an elliptic complex

(1) Ω° (9) lX Ωΐ (9) lX Ω: (β),

and let H%, 0 < ρ < 2, be the cohomology groups of this complex. The
Atiyah—Singer index theorem implies that the following equality holds [8]:

( - l ) p dim Hp

A = 8\ c2 (P) | - ^p- (χ (Χ) - σ(Χ)).
p=0
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In particular, for G = SU(2) we have dim G = 3. In addition, if Ζ is a
simply-connected manifold with positive intersection form, then χ(Χ) = 2 + σ(Ζ),
that is, χ(Χ) — σ(Χ) = 2. Hence it follows that in the case under
consideration

p=0

Theorem 2.2. Let A be a self-dual connection in P. Then there exist a
neighbourhood UofOe H\ and a smooth map φ : U -*• HA such that:

(1) if A is irreducible, then a neighbourhood of the point [A] e Μ is
diffeomorphic to the set <p~'(0) C HA;

(2) if A is reducible, then a neighbourhood of the point [A] e Ji is
diffeomorphic to φ~1(0)/ΓΑ.

The proof of this theorem is based on ideas applied by Kuranishi to the
investigation of moduli of complex structures. Let

Φ: A-+L'l {0-1 (9))

be a map given by

Φ {A + a) = F_ (A + a) = d~Aa + -\- [a, a].

It is easy to see that the connection A + a is self-dual if and only if

Consider the differential ΌΦ of the above map at the point A. Being
restricted to the slice 7^#ε, this differential is a Fredholm operator

«£: ker d*A « z L\ (Ω* (β))) — L\ (

and therefore Φ is a Fredholm map [46]. After being composed with a local
diffeomorphism, Φ can be represented in the form

Φ {χ) - (Ζ)Φ)AJ: + φ (χ).

Now Theorem 2.2 is obtained by applying to Φ the standard technique of
non-linear analysis (for details, see [22]).

From Theorems 2.1 and 2.2 an important corollary follows.

Corollary. Let A be an irreducible connection {which means that H% = 0), and
in addition let H\ = 0. Then the moduli space Ji is a smooth five-dimensional
manifold in a neighbourhood of [A]. If A is a reducible connection, the group TA

acts on H\ by multiplication by a unitary complex number; therefore, if Ηχ = 0,
then by the index theorem Η\/ΤΛ ~ C"+S' and dim Η A = dim Γ^ = 1.

Thus, we have shown that at "good" points the moduli space Ji is a
smooth five-dimensional manifold. A description of the global structure of Ji
is based on the following key assertion.
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Theorem 2.3. Let At e ri be a sequence of self-dual connections on a bundle P.
Then we can choose a subsequence of At such that one of the following two
conditions holds:

(1) the connections A{ are gauge equivalent to connections At e si converging
in the C™-topology to a self-dual connection Αχ,; hence, [A,] -* [Aoo] e Ji\

(2) there are points χ e X and trivializations p< of the bundle Ρ\κ on the
complement Κ to an arbitrary geodesic ball centered at χ such that pfJ"; -ν θ in

), where θ is a trivial flat connection.

The proof of this theorem involves the following two lemmas.

Lemma 2.4. Let L, C > 0 and let {fi} be a sequence of integrable functions

on X with f > 0 and /̂;<2μ <Ι L. Then there exist a subsequence of {/}}, a

finite point set {x\, ..., X/} C X, and a countable family {Ba} of geodesic balls
of X such the balls of half-radii cover X\{x\, ..., xi} and for each α one has

Lemma 2.5. Let hi be a sequence of metrics in the ball B4 close enough to the
Euclidean metric that converges to a metric h^ in C°°(54). Also, let Αι be a
sequence of connections on a trivial bundle on B4 that are self-dual with respect
to the metrics hi. Then there is a constant C depending neither on hi nor on At

such that if

then there is a subsequence in {A{} such that connections Λ, gauge equivalent to

Αι converge in C°°(—EAto a connection A^ that is self-dual with respect to
Aoo-

The reader will find proofs of both above assertions in the book [22] (see
also [52]).

To obtain Theorem 2.3, consider on a geodesic ball Β Q Χ οϊ radius r a
geodesic coordinate system χ. Thus, χ determines a diffeomorphism
χ : Β4 -+ Β from a Euclidean ball of radius r to B. By taking the inverse
image of the metric h and continuing it over the Euclidean unit ball by means
of homothety, we obtain a metric

hT = y*h (rx) = r2 (bu -}- rH) (\ y \*))dy,dyi.

We choose r so small as to make the metric r~2Hr on B4 satisfy the
conditions of Lemma 2.5. By virtue of conformal invariance, every connection
A{ is self-dual with respect to the metric hr.

We now take the constant C in Lemma 2.4 as in Lemma 2.5 and put

ft = IFlAi)]2, L = in2. Then, by virtue of Lemma 2.5, on every ball — Ba
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some sequence converges (after gauge transformations) to Α^α). Using the
Cantor diagonal process, one can achieve convergence simultaneously for all
numbers a.

The gauge transformations participating in this process determine

connections Λ,·(α) -> ^ ( α ) in Ο^Ι-^-ΒΛ and transition functions

gi (α, β): -^-Βα Π 4 " £ e ~ v ' S U (2) s a t i s f y i n g t h e relation

(2) A, (a) = -dgi (α, β) g i (α, β)"1 + g i (α, β) Α, (β) & (α, β)"1.

The compactness of SU(2) provides a uniform bound for dgi in the formula
(2), and hence one can select from the sequence a uniformly convergent
subsequence. Repeated application of the formula (2) provides convergence in
the C°°-topology. Using the Cantor diagonal process, we obtain a
subsequence 04<(α), g,(a, β)), which converges to (/^(a), goo(a, β))
simultaneously for all (α, β). This determines a self-dual connection on the
bundle Q over X\{xu ···, */}· Moreover, if a set Κ C ^\{*i, ···, */} is
compact, then by induction on the number of balls covering Κ one can
construct isomorphisms p,· : Q\K -*• P\K such that p*: A^ ->- Ax in C°°(J5T)
(see [52]).

We now consider punctured balls Bj centered at points Xj (1 ^ y ^ /) of
sufficiently small radii. Since

by Fatou's lemma

Hence, by Uhlenbeck's theorem on removable singularity [52] both the
connection Αχ, and the bundle Q can be extended to the whole manifold X.
By definition of the points xj

ί Q

Bi

for all balls Bj. Hence, for a sufficiently small ball,

Bj BJ

On the other hand, since all the connections considered are self-dual, the
integrands are nothing but Chern forms. Hence they can be calculated
modulo 8JI 2 Z with the help of integrals over the boundary (the so-called
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Chern — Simons invariants). Therefore, uniform convergence on the boundary
dBj implies that

jj I F (4») Ρ άμ =, 1 im 5 I /? (if,)12 ώμ mod 8π3Ζ·

But since

ξ | Ζ-' {Ax) \- άμ. > Ο and
Β ·

we get only two possibilities:

(a) I = 0,

(b) lim ξ | Z1 (̂ "j) |2 ί2μ = 8na and $ | F (4») p ώμ < 8π2,
Β; i"

hence it follows that β is a trivial bundle and A^ is a flat connection. Thus,
Theorem 2.3 has been proved completely.

Let us make an important remark. Theorem 2.3 demonstrates that
degenerate self-dual connections on a bundle Ρ are those connections whose
curvatures are concentrated in a neighbourhood of some point.

We now show that one can attach a boundary to the manifold M. Let
β: IR ->• R be a smooth function approximating the characteristic function
X[-i,i], and let

χ

where d(x, y) is the geodesic distance on X. We put

(3) λ (.4) = -^- min { S | 3 . T G I : RA (X, S) = in2},

where the number Κ is chosen so that λ(Α{) = 1 for an instanton A\. This
function is introduced as a measure of the curvature concentration: if we
substitute %[_i,i] for β, then λ(Α) becomes the radius of the smallest ball
containing half of the action. In any case, the ball of radius λ{Α) contains
more than half of the action, and hence any sequence [Aft e Μ without a
convergent subsequence must satisfy the condition X(At) -»· 0 by Theorem 2.3.
Thus, the function λ measures distance from the boundary.

Theorem 2.6. There is a constant λο > 0 such that if a self-dual connection A
on a bundle Ρ meets the condition λ(Α) < λο, then the minimum of the function
(3) is reached at a single point x{A) e X.

Proof. We take a small geodesic ball of radius r centred at a point x,
providing a minimum for A, and transfer from it both metric and connection
to a Euclidean ball of radius τ/λ(Λ). For every sequence At of connections
with λ(Αι) -> 0 the sequence Ai of inverse images satisfies by construction the
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condition λ(Λ<) = 1. Hence by Theorem 2.3 and Lemma 2.5 one can choose
from 2.i a subsequence that converges to a self-dual connection on R4. It
follows from the classification presented above (Theorem 1.3) that the limit
connection is an instanton A\. Since k(At) = 1, it follows from Theorem 2.3
that every subsequence of A{ is convergent, and because the limit is unique,
At -» A\. The function RAi has a unique non-degenerate minimum. Then the
same is true for R^ if λ(Α) is small enough. But every two minima for A
should be located at a distance not exceeding 2λ(Α), because balls of radius
HA) centred at any of the minima contain more than half of the action.
Hence, the uniquenes of the minimum for R ^ yields the uniqueness of the
minimum for R^ as well. The theorem is proved. •

We now put

JiK = {ΙΑ\(=Μ\λ{Α)< λ0}

and define a map

p. .MK -+ λ' Χ (Ο, λ0),

specifying it by the formula

ρ (Α) = (χ(Α), λ (A)).

Theorem 2.7.

(1) The space Jl \ ./??.„ is compact.
(2) Mu is a smooth manifold.
(3) ρ is a smooth covering map.

Proof. The first statement follows at once from Theorem 2.3. From the same
theorem it follows that if λ(Α) -• 0, then [A] -*• 0 in C°°(X\5(x(y4), r). Using
this fact, one can show that H\ = 0. But now the second statement follows
from Theorem 2.2. Since the minimum of RA is non-degenerate, ρ is a
smooth map. By Theorem 2.3, ρ is a proper map. Therefore, in order to
prove the third statement it suffices to verify that the differential of ρ is an
isomorphism. This is done by means of Taubes' implicit function theorem
[48]. •

Theorem 2.8. The map ρ is a diffeomorphism.

This is the most lengthy technical part of Donaldson's proof, which relies
on subtle estimates of the curvature. The idea of the proof is to show that
any two self-dual connections A and Β for which x(A) — x(B) and the number
λ(Λ) = λ(Β) is sufficiently small can be joined in Μ by a short path (for
details, see [14]). •

It follows from Theorems 2.7 and 2.8 that the moduli space Μ can be
compactified by points of the manifold X:

U Χ Χ [Ο- Κ]·
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We will show in the sequel that Ji can be made into a manifold by means of
a small perturbation; then Ji will become a manifold with boundary x.

Now let us proceed to modifying Ji into a smooth manifold. We have
noted earlier that if /f̂  = 0 for all self-dual connections A, then the moduli
space Ji is a smooth manifold except for some n(Q) points corresponding to
reduced connections. Generally speaking, the two-dimensional cohomology
does not vanish for every connection A, therefore there may exist a subset
Κ Q Ji such that for elements of it Ηχ Φ 0. By Theorem 2.7 the set Κ is
compact.

It turns out that the space Ji can be perturbed so as to make it a
manifold in the general case as well. A perturbation of neighbourhoods of
reducible connections is made "point-blank": the finite-dimensional map <p(x)
in the expansion Φ(χ) = (ΌΦΑ)(χ) + φ(χ) can be replaced by a similar map
with a surjective differential. Then, as we pointed out in Theorem 2.2, a
neighbourhood of [A] is diffeomorphic to the space C3/Sl—a cone over CP2.
Hence it can be assumed that Κ C'. >M Π 33*·

To construct a perturbation of the set K, we observe that the map
p~l (S3*) -> 38* is a principal S?/{± l}-bundle. Since the group #/{± 1} acts
on Banach spaces LI (Q'i (g)) and Li (Ω=—(g)), we get vector bundles 8s C 82

with norms and connections associated with the principal bundle p"1 (53*) —>- 53*
There exists a canonical section Φ = F_(A) of the bundle $2, and we will
search for perturbations σ <=Ε C°° (33*, #'3) such that zero is a non-degenerate
value of Φ + σ .

Theorem 2.9. There is a section σ s Ο (SB*. 'S3) with support in a
neighbourhood of Κ such that (Φ + σ)~'(0) is a smooth five-dimensional
manifold.

Proof. We cover Κ by finitely many slices ΤΑε and take open sets U\, U2
such that Κ C U\ and U\ C ^2· Let σ be a bounded section of the bundle
<?3 with support in £/2. Then the set

t = { M J E ^ I || (Φ + σ) (Α)\\υ, < / ? }

is compact. This follows from the fact that U2 is covered by finitely many
_ Λ

slices and on each of them φ (A) = dA a + — [α, α] + σ (A), where

d*A a = 0 and || α | | , 2 < ε. Hence, Z|-bounds on σ(Λ), α, (Φ + σ)(Α) by virtue

of ellipticity arguments result in an 1,4-bound for a. The required property
now follows from the compactness of the embedding Li C L\. Thus, if
Φ + σ vanishes on U\ in a non-degenerate way, then this remains true also for
sections Φ + σ' close to Φ + σ in the topology of uniform convergence together
with derivatives on compact sets. The space of all such non-degenerate
perturbations is dense. Indeed, for each point we take a slice on which there
is a decomposition Φ + σ = L + ψ, where L is linear and ψ is finite-
dimensional. By virtue of compactness, we can choose a finite subcover
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formed by those slices. We modify the function Φ + σ, dividing it by a regular
value of ψ and extending with the help of a cut-off function. By Sard's
theorem such perturbations can be made in the L\ norm as close to Φ + σ as
desired. _

The section itself vanishes outside U\ in a non-degenerate way. Using the
density of the perturbation space, we choose a sufficiently small σ so as to

make Φ + σ vanish in a non-degenerate way on t/2\ U\. Then Φ + σ is
everywhere non-degenerate. Consequently, M° = (Φ + σ)~'(0) is a
five-dimensional manifold with boundary X and η singularities whose
neighbourhoods are homeomorphic to C3/5'1·

We now show that the resulting manfold Jt" f] 53* is orientable. For the
manifold M° f] fB* consider the Stiefel-Whitney class W](ker ν"(Φ + σ)). We
can avoid singularities by using gauge transformations ? o C ^ that are
stationary at a fixed point XQ e X. The group ^ 0 acts freely on si and results
in a quotient space π: ί&-*-98. Over ί3* the projection π is a principal
S0(3)-bundle; hence, the manifold MP Π ^ * is orientable if and only if
π" 1 (Ji° Π ®*) is orientable.

The vector bundle ker ν(Φ + σ), being restricted to an arbitrary
compact subset C d η'1 (Μ° f| ?B* , determines an element of the AT-functor
K(C), the so-called index class of the family of Fredholm operators
d*\ + dA -}- (Vo) A. Considering the deformation <2* + dA -f- t (Τσ) A,
0 < t < 1, we see that the index class does not depend on the choice of the
section σ. Since the Stiefel — Whitney class w\ can be omitted through
KO, in order to prove orientability it suffices to consider an element
ind (<2* -f- d'A) <= KO (C), where C is a closed loop in fQ.

We embed the group SU(2) in SU(3) in the standard way. Let A be an
5i7(3)-connection and ά the Lie algebra bundle associated with this
embedding. Then g splits into the Whitney sum $ — g, φ R φ V, where V
is a complex vector bundle of rank 2 and 0? is a trivial bundle. This splitting
is obviously compatible with the connection. Hence, w\ (ind {d*~ + d-)) —
= ivl (ind (d*A -j- d'A)),, and so the loop C is subject to homotopy in the space
of classes of gauge-equivalent SC/(3)-connections.

We will show that $ 3 is simply-connected. Since the group ^ 0 of gauge
transformations of the principal Si/(3)-bundle preserving the point xo acts
freely on the space of connections, n1 ($ 3) ^ π 0 ($0). Therefore in order to
establish that i§ 3 is simply-connected it suffices to verify that πο(3?ο) — 0, that
is, the group ^0 is connected. The principal bundle Ρ is trivial over a
complement to a point and, in particular, over the two-dimensional skeleton of
the manifold X. Since n2(SU(3)) — 0, every transformation from ^ 0 can be
deformed to a transformation that is the identity on the two-dimensional
skeleton. Contracting the two-dimensional skeleton of X to a point, we obtain
a four-dimensional sphere S 4 . The homotopy type of ^ 0 on S4 does not
depend on the Chern class C2(P) (see [9]), and hence it suffices to consider a
trivial bundle. But n4(SC/(3)) = 0, and therefore the group <&0 is connected.
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Thus Jf° f] .58* is an orientable five-dimensional manifold. Adding a
boundary to it with the help of the procedure described in Theorem 2.8, we
obtain a cobordism between X and η copies of QP2, needed for the proof of
Donaldson's Theorem 1.4. •

§3. Further results

(1) Non-simply-connected manifolds and orbifolds.
A detailed study of moduli space orientation and virtuoso use of
transversality arguments enabled Donaldson to generalize his theorem to the
case of non-simply-connected manifolds.

Theorem 3.1 [18]. Let X be a smooth compact oriented four-dimensional
manifold with definite intersection form Lx. Then Lx can be diagonalized over
the ring of integers Z.

A somewhat weaker result was obtained independently by Furuta [25].
There are also results for certain indefinite forms. The strongest among

them is of the following form.

Theorem 3.2 [16]. Let X be a smooth compact oriented four-dimensional
manifold such that the first integral homology group H^ (X; Z) is without
2-torsion. Suppose that the positive part of the intersection form Lx of X has
rank 2. Then

»(! J X 0)·
Fintushel and Stern [19] transferred the technique of Yang-Mills fields to

four-dimensional orbifolds, that is, spaces with finitely many singularities
modelled over spaces (R4/r, where Γ is a finite group. Orbifolds appear quite
naturally as quotient spaces either of smooth four-dimensional manifolds by
action of a finite group or of five-dimensional manifolds by action of the
circle. Orbifolds are rational homology manifolds, and analysis over them
greatly resembles analysis over smooth manifolds—the principal modification is
that there appear additional terms in the index formula, taking account of
singularities. Generalizing the technique of S0(3)-connections to orbifolds,
Fintushel and Stern obtained strong restrictions on the existence of orbifolds
with a prescribed intersection form. This enabled them to prove that the
group θ# of homology 3-spheres modulo homology cobordism has infinitely
many elements.

Theorem 3.3 [20]. The Poincare homology sphere Ρ has infinite order in θ#,
that is, no connected sum P # . . . # P bounds an acyclic smooth four-
dimensional manifold. In addition, Θ#/(Ρ) Φ 0.

This result is very unexpected, because according to Freedman [24] the
Poincare homology sphere bounds an acyclic topological four-dimensional
manifold.
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(2) Exotic structures on R4.
It follows from the Freedman theorem that a direct sum decomposition of
the intersection form of a four-dimensional manifold can be realized as a
topological decomposition of the corresponding manifold into a connected
sum. Donaldson's Theorem 1.4 provides very strong restrictions on those
intersection forms admitting a smooth decomposition. As a consequence
of these restritions, "exotic R 4 " come into being—smooth manifolds
homeomorphic but not diffeomorphic to Euclidean space R4 (see [26]). The
first examples of such exotic R4 were obtained as open subsets in S2x S2 or
CP 2 · Then Gompf [27] found countably many exotic R4 in this way.

Let us give here an example of an exotic R4. It follows from Donaldson's
Theorem 1.4 that if the intersection form Lx of a four-dimensional manifold is
even and positive definite, then X is not smooth. In particular, the manifold
Fs4 realizing the intersection form LF% = E% Θ E% is not smooth. At the
same time, the Kummer surface

Κ = {(z0 : zx : z2 : z3) <= CPS | z4 + z\ + z\ + z4 = 0}

with the intersection form LK — —2ES © 3( 1 0 J is a smooth manifold. Since

S2xS2 with L&xs' — L o) *s a ^ s o a s m o o t n manifold, one would like, by

means of surgery on K, to remove

3 (S2 X S2) = 5 ! x S ! # S ! x S 2 # i ! x i i

with L3(s«xs«) — 3 ί 0 ] and thus to obtain, after reversing the orientation, the

smooth manifold Fs 4 . We will show that such a surgery is impossible. (And
from this there emerges—in a quite unforeseen way—the existence of an exotic
R4, denoted in the sequel by RFD.)

Let a{, bi 6Ξ H2 (K; Z), i = 1, 2, 3, be generators of the two-dimensional
homology of the Kummer surface. In order to bring about surgery on this
surface, we make use of two theorems, which may be considered as corollaries
of Theorems 6.5 and 6.8 from Ch. I.

Theorem 3.4. Homologies generated by elements ah bt €Ξ H2 (A*; Z) are
represented by an edged topological embedding of X = 3(S2xS2)—D4 in K.
Moreover, this embedding is smothly equivalent to an embedding of X in
3(S2 χ S2), representing the homology of the manifold 3(5 2 χ S2).

Theorem 3.5. Let V be a non-compact simply-connected four-dimensional
manifold without boundary satisfying the condition H2 (V; Z) = 0 and having a
single end homeomorphic to S2 χ [0, oo). Then V is homeomorphic to R4.
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Theorem 3.4 claims that the following commutative diagram occurs:

In this diagram Ν χ and Ν3^:<8η are neighbourhoods of the images of X in Κ
and 3(5 2 xS 2 ), respectively. We recall that an edged embedding of a manifold
A" is an embedding such that the image of the boundary dX has a neighbourhood
of the form QXx [0, 1). The existence of an edging for j(X) C 3(5"2 χ S2)
implies that the manifold V = 3(S2 χ S2) has a unique end homeomorphic to
S3 χ [0, oo). Hence, by Theorem 3.5, V is homeomorphic to R4.

We will now use Donaldson's theorem and show that the smooth structure
inherited by V from 3(5 2 χ S2) is not standard, that is, V is not diffeomorphic
to R4 with standard smooth structure. Suppose there exists a smoothly
immersed three-dimensional sphere S3 encircling the manifold X in its collar.
Cutting off from Κ a manifold i(X) along this sphere and gluing the cut
by a four-dimensional disk D4, we can construct a smooth manifold
with intersection form E& φ Ε%, that is, the smooth manifold FsA. But this
is prohibited by Donaldson's theorem. Hence, there is no smoothly
embedded sphere S3 in the collar of i(X). By virtue of the diffeomorphism
Νχ = iV3(s*xs*) there is no smoothly embedded sphere S3 in the collar of j(X)
either. Denoting by C the compact set 3(S 2 xS 2 ) —(j(X) U collar), we see
that there is no smoothly embedded sphere S3 encircling C in the manifold

top

V s R4. Hence, the manifold V is not diffeomorphic to four-dimensional
Euclidean space with standard smooth structure R\ t, because there are
arbitrarily large smooth three-dimensional spheres in R*t. Putting R F # = V,
we thus deduce that RFD is not diffeomorphic to Rtt, as required.

An indicator of exotic smooth structure in R4 is the following striking
property of &FD , which certifies that the latter space is not diffeomorphic to
Rtt: there is a compact set C in the space RFD that cannot be encircled by
any smoothly embedded three-dimensional sphere. Of course, there are
arbitrarily large continuously embedded three-dimensional spheres in R*FD.
(To construct them, we pick any norm in R*?D and consider the sets
{x e= RFD: | | X | | = R) for large R.) Therefore, in the smooth manifold RFD
spheres are extremely "jagged" near infinity.

Further advance in constructing exotic R4 is due to Taubes [50], who
generalized the basics of Yang-Mills thoery to the so-called asymptotically
periodic four-dimensional manifolds. An asymptotically periodic four-
dimensional manifold is a non-compact manifold whose end has periodic
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configuration Wx U W2 U - U Wn U ..., where all the Wt are
diffeomorphic to an open manifold W. The simplest examples of periodic
manifolds are those manifolds whose end is of the form Υ3 χ (0, oo) and
W = 7χ(0, 1). Taubes showed that if certain conditions imposed on the
homology of a manifold W and representations n\{W) -> SU(2) are met, then
asymptotically periodic manifolds behave from the viewpoint of anti-self-dual
equations as compact manifolds. This observation enabled him to generalize
Donaldson's theorem to asymptotically periodic manifolds and to prove the
following assertion with the help of the resulting generalization.

Theorem 3.6 [27], [50]. There is a family Rs, t of smooth four-dimensional
manifolds parametrized by points (s, t) e R2 every one of which is
homeomorphic but not diffeomorphic to the Euclidan space R4.

Thus, there exist moduli for smooth structures on the topological manifold
R4. Moreover, Taubes' family does not contain all exotic R4: none of the
IRS,( can be embedded in the standard RJ, while the violation of the
λ-cobordism theorem in dimension 4 (see Theorem 3.7 below) implies that
such exotic R4 should exist.

In the spirit of Taubes' work, Donaldson and Sullivan generalized the
Yang-Mills theory to quasiconformal four-dimensional manifolds for which
the coordinate transition fucntions are quasiconformal maps of domains
in R 4 . This enables us to transfer to such manifolds all the results
obtained for smooth four-dimensional manifolds. In particular, there are
exotic quasiconformal structures on R4. All we have said above about
quasiconformal manifolds extends a fortiori to Lipschitz four-dimensional
manifolds in sharp contrast to higher dimensions: according to Sullivan, every
topological manifold has a unique Lipschitz structure in dimensions exceeding
4 [47].

(3) The Donaldson invariant.
We restrict ourselves to the case of smooth simply-connected four-
dimensional manifolds X. For an arbitrary bundle Ε over X the rational
cohomology ring of the space £©* is generated by classes c/α, where c is the
rational characteristic class of the universal bundle on the product 53* X X
and α is a homology class of X. In particular, all rational cohomologies of
the manifold ^ * are in even dimensions. The invariants constructed by
Donaldson are in homologies of .f>*, hence it seems reasonable, in order to
get interesting results, to assume that the moduli spaces under consideration
are of even dimension. We put σ(Χ) = ^(χ)—£>2~(*)> where c(X) is the
signature of X, that is, the signature of its intersection form Lx, and
bi (X), bz(X) are the dimensions of the positive and the negative parts of this
quadratic form. As we noted earlier,
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Since σ = bi —b^, we have χ = 2 + b£ +62", and so

dim Μ = 8 | c2 (E) | — dim G-(l + ^ ) .

In what follows we shall be interested in the cases G = 5(7(2) and G = SO(3),
where dim G = 3. Hence, for G = 5C/(2) and 50(3)

dim Ji = 8 I c2 (E) | — 3 (1 + 62),

and the moduli space Ji is of even dimension exactly when b^ is odd.
Manifolds with b^ — 1 form a very special class, because in this case

there appear reducible connections in the moduli space for a family of
metrics of codimension 1. Consider the two-dimensional moduli space for
5i7(2)-connections on such a manifold with the Chern class C2 = 1. We can
assign to a typical metric on A" a homology class in fQ* that changes in the
presence of reducible solutions only. As a result, we get a differential-
topological invariant Γ χ of X lying in B2 (X; Z). For algebraic surfaces X
this invariant can be calculated in a number of cases by using a holomorphic
description of anti-self-dual connections with the help of stable bundles. Every
rational surface has b^ — U this property is shared also by some irrational
surfaces, in particular the family Dpq (p and q are coprime integers)
constructed by Dolgachev. The difference between the complex geometry of
rational and irrational surfaces is reflected in stable bundles, and hence in the
structure of moduli spaces and in the Γ invariant. As a result we obtain the
following statement.

Theorem 3.7 [17]. The surfaces Dpq are homotopically equivalent {and therefore
homeomorphic and h-cobordant) but not diffeomorphic to the connected sum

Ci5 2 # 9

Thus, the A-cobordism theorem cannot be extended to smooth four-
dimensional manifolds. Moreover, using the Γ-invariant, Okonek and
Van de Ven [39] have shown that for homotopically equivalent manifolds Dpq

there are infinitely many diffeomorphism types.

§4. Floer homology

Let Μ be a closed connected oriented three-dimensional manifold. It is
well known that every topological three-dimensional manifold can be endowed
with a unique smooth structure, so we can view Μ in any of these two
categories of manifolds. An important algebraic invariant of Μ is the
fundamental group %\{M). Unfortuantely, application of this invariant to the
classification of three-dimensional manifolds meets serious difficulties: firstly,
it is not known whether nj(M) = 0 implies that Μ = 5 3 (the Poincare
conjecture), and secondly, one lacks a natural characterization of those groups
capable of serving as fundamental groups of three-dimensional manifolds. We
can arrive at alternative invariants of three-dimensional manifolds by studying
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representations of %\{M) in non-Abelian Lie groups G. Let

Jl. = Horn (π! (Μ), G)lad (G)

be the set of equivalence classes of representations of πι(Μ) in G. While 3t
itself depends on the homotopy type of Μ only, the corresponding smooth
bundles together with a smooth structure on Μ may lead to new topological
invariants arising, such as the Reidemeister torsion [35]. Recently Casson has
defined a new topological invariant for three-dimensional homology spheres
M, that is, closed three-dimensional manifolds such that Hx (M; Z) = 0.
To define this invariant, we need a certain amount of information on
representations of discrete groups Γ in SU(2) and the Hager decomposition of
three-dimensional manifolds.

The space Μ (Γ) of representations of a discrete group Γ in SU(2) is made
into a topological space by means of the simple convergence topology.
We denote by j? (Γ) the open subset of Μ (Γ) formed by irreducible
representations. The group SU(2) acts on the space .9/(T) by conjugations.
This action factors to an effective action of the group S(7(2)/{±1} = SO(3),
which is free on the space ^?(Γ); thus we obtain a principal bundle

η: Μ (Γ) ->• Μ* (Γ) = Μ (Γ)/ ad (SU (2)).

It is not difficult to show that if L is a free group of rank k, then Μ (L) is
homeomorphic to the product SU(2)k and it is endowed with a smooth
manifold structure in such a way that the tangent space to J? (L) at a trivial
representation identifies naturally with Hl(L; s«(2)).

The fundamental group Tg of an oriented surface of genus g is the quotient
group of the free group L·^ with generators a\, b\, ..., ag, bgby the normal
subgroup generated by Β = [α\, b{\ ... [ag, bg]. To the canonical projection
Lag -*• rg there corresponds an inclusion Μ (Tg) c> J?(L2g), whose image
in Μ (L^g) has the form d~\l), where 8: Μ (L^) -*• S3 is given by
d (ρ) = Ρ (δ)ι Ρ ε -% (L-zg)- Calculating the differential for the commutator
map (x, y) w· [x, y], we find that for g > 1 the sets J? {Tg) and Jft* (Tg) are
submanifolds of the manifolds J? (L2g) and Ji* {Lzg) of dimension 6g—3 and
6g—6 respectively.

We now recall certain details about the Hager decomposition of a three-
dimensional manifold (for the details, see [S3]). Let / be an ordered Morse
function on a closed oriented three-dimensional manifold M, and let t be a
regular value of/separating critical points of indices 1 and 2. The sets
W\ = {/ < t) and W2 = {/ > i) have their intersection F = { / = / } as a
common boundary, and their union is the manifold M. Such a subdivision
W\ \JP W2 is called a Hager decomposition of genus g of the manifold Μ
(here g is the genus of F). The order of W\ and W2 is of significance: it
enables us to orient F like the boundary of W\ with outer normal. If
M' = Wl \Jr'W\ , then by taking connected sums along the boundaries we
can form the Hager decomposition Wi # W[ U F # F ' W^wl of the
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manifold Λί ψ I f . If M' = S3 is the unit sphere in C2 with standard
Hager decomposition {\z\\ < |z2|} U {kil > I22I}, then we obtain on
I = J l i f S3 the elementary stabilization of the Hager decomposition of the
initial manifold M. The stabilization is obtained by repeating this process.
The following statement is true (the Reidemeister — Singer theorem): any two
Hager decompositions of the same manifold are stably isomorphic.

Let W\ \JF W2 be a Hager decomposition of genus g of a manifold M,
and let Fo be the surface F with a disk cut out. Consider the Van Kampen
diagram

where all homomorphisms are surjections. At the level of representation
spaces, the above diagram induces the following diagram of embeddings:

,=#(*,(

It is not difficult to show that %\{Wi) is a free subgroup of rank g; hence, (?,·
is a half-dimensional submanifold of ft (L2g).

By fixing in JI,{F^) a basis (αϊ, b\, ..., ag, bg) that is symplectic for the
orientation of /'„., we can orient the manifolds Μ (L2S), $ {Tg), JR* (Γ,,) and
^i ->-Q* in a coordinated way. Let {Qu Q2)JHU ) denote the intersection index
of Q\ and Q2 in ^?(L2ff). The properties of representation spaces yield at once
the following assertion.

Proposition 4.1. A manifold Μ is a homology sphere if and only if
(Qu (?2)̂ ?a2g) = ± 1 · In this case Q\ and Q2 are transversal at a point
corresponding to the trivial representation.

In particular, if Μ is a homology sphere, then the trivial representation
determines an isolated point and the intersection Q\ Π Qi is compact. Hence,
in this case one can define the intersection index of Q\ and φ in
M* (Tg) = .7ί* ( Λ ι (F)), denoted by

Definition 4.2. Let Μ be a three-dimensional homology sphere. The number

λ (Μ) =-γ(- 1)β (<?*, $ W f ( r » / ( C i , QzUii^)

is called the Casson invariant of M.
Casson has shown that λ(Μ) does not depend on the Hager decomposition

W\ \Jp W2 of Μ and that it is an integer. The presence of the multiplier 1/2
in the definition is motivated by the fact that (Qt, Q* )w*(n1(F)) is an even
number (mainly because the map SU(2) -> 50(3) has degree 2).
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Let us put the properties of the Casson invariant together into the
following theorem.

Theorem 4.3. Let if be the set of oriented diffeomorphism classes of three-
dimensional homology spheres. Then there is a map λ: if -+• Ζ with the
following properties:

1) λ(Μ) = 0 if all representations of πλ(Μ) in SU(2) are trivial;
2) the Rokhlin invariant p(M) of Μ is the modulo 2 reduction ofX(M);
3) λ ( - Μ ) - - λ (Μ);
4) λ (Μ, # Af8) = λ (MO + λ (Μ2).

In 1987 Floer [21] showed that the Casson invariant can be obtained by
means of the infinite-dimensional Morse theory as the Euler characteristic

7

Σ (—1)* rk HFX (M) of 8-periodic homology theory HFt (M). The
lc=o

construction of the homology groups HF* (M) is based on a study of gauge
fields for the three-dimensional and four-dimensional manifolds.

Let Μ be a three-dimensional manifold and π : Ρ -»• Μ be a principal
bundle with structure group SU(2). Using the obstruction theory, it is not
difficult to show that every principal S£/(2)-bundle over a three-dimensional
manifold is topologically trivial, that is, it admits a representation in the form
of a product Ρ = MxSU(2). If such a trivialization has been chosen, then
we can identify the space of connections s/(P) with the space Ω'(Μ) ® su(2)
of 1-forms on Μ taking values in su(2). Under this identification the zero
element of Ω}(Μ) ® su(2) corresponds to the trivial connection θ on P. The
gauge transformation group is identified with the map space C^iM, SU(2))
acting on st by the rule

g (A) - gAg~l + (dg) g~*, g e i i , Λ e J.

We will assume that s4 and 'S are endowed with topologies induced by the
Sobolev norms £%. If k+\ > 3/p, then t§ acts continuously on s/. As
before, in this case the orbit space Si = s//9 is an infinite-dimensional
manifold, apart from those points corresponding to irreducible connections.
Irreducible connections form an open dense set 33* in 33.

In what follows we will need a description of the tangent and cotangent
spaces to &(P) in terms of classes [A] of equivalent connections. Since s/(P)
is an affine space, TAs/(P) = Ω}(Μ) ® su(2) and an easy calculation shows
that

TA (S (P)-A) = im {dA: Q° (M) <g> su (2) -+ Ω1 (Μ) <g) su (2)},

where dA is the covariant derivative on sections of the bundle QP . If A is an
element of an open dense set J* (Ρ) α -Α (Ρ) of irreducible connections, then

acts on A with a stabilizer {±1}, so

Tm 33 (Ρ) = Ω1 (Μ) (x) su (2)/dA (Ω° (Μ) (x) su (2)).
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In order to obtain the cotangent space to 3i(P), we first observe that there is
a non-degenerate bilinear pairing

Ω1 (M) (g) su (2) χ Ω2 (M) ® su (2) -- R. (a, b) «. — _\ tr (a /\ 6);
Μ

hence T*A Λ (Ρ) =ί Ω2 (Μ) (g) sw (2). Cotangent vectors on # ( P ) are cotangent
vectors in Ω2(Μ) ® iw(2) on J2/(P) that vanish along ^(P)-orbits, that is,

Μ

for all a e Ω°(Μ) (g> su(2). Using Stokes's theorem, we deduce from this that
there is a natural isomorphism

?ΪΑ] »' ( p ) = k e r idA- Ω 2 (AT) <8> a* (2) -*• Ω3 (AT) (g> su (2)}.

Now consider the case where Μ is a oriented three-dimensional homology
sphere. The Chern—Simons invariant of classes of gauge equivalent
connections is determined by the function

CS: ® (P) -^ Sl = R/Z.

This is a function playing the role of the Morse function in the definition
of Floer homology. To define the function CS, let us agree that
CS(Q) = 0, where θ is a trivial connection, and that the derivative
(An2)~lDCSlA-] <Ξ T*Affi (Ρ) is the curvature 2-form FA ( = dA + A /\ A in
terms of 1-forms on Ρ) ε Ω2(Μ) ® su(2). It follows from the Bianchi
identity that d^F* ~ 0, and therefore the non-degenerate pairing

Ω* (M) (g) su (2) χ Ω2 (M) (g) su (2) -»- R, ^ ^ F A ,

determines in a natural way a 1-form on &(P). This 1-form on ^ ( P ) is
closed but not exact. The Chern—Simons function is obtained from it by
integration. We can obtain a less abstract definition of the function CS as
follows. Let A4 be a connection on the principal 5{7(2)-bundle over Μ χ [Ο, 1]
such that Λ 4 |Μχ {0} is a trivial connection and Λ4 |Μχ{1} = A. Then

1 i' Λ 4

Μ χ [ο ,1]

The construction of the Floer chain complex is based on those critical
points of CS lying in .fi*(P). By definition, the derivative of the function CS
is a curvature, hence [A] is a critical point of CS if and only if FA = 0, that is,
when A is flat. To classify such connections, we recall the notion of the
holonomy of A. Let y ε Μ and ρ e n~l(y) be distinguished points in Μ and
P, and let γ : t t-> j(/) be a closed loop in Μ such that y(0) = XI) = y. We
define a horizontal lifting η : t H» />(/) e Ρ of the loop γ by requiring that

η(0) = ρ, π(η(ί)) = y(t), and ^ ( - ^ Γ η ^ ^ ) = °' T n i s d e t e r m i n e s t n e

horizontal lift in a unique way. Then η(1) = /?£γ(η(0)) for some element
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gy e SU(2), and this element gy is called the holonomy of A along γ. The
correspondence γ ι-> gy is a representation of the group of closed loops in Μ
with a distinguished point ^ in the group SU(2). Any change of the
distinguished point ρ or a change of the connection Λ to a gauge equivalent
one only results in a conjugation in the group SU(2). If the connection is flat,
then the holonomy along contractible loops is trivial. Hence, the holonomy is
determined by a representation of the fundamental group %\{M) -* SU(2). It
is called the monodromy representation. A well-known theorem states that flat
connections are, up to gauge transformations, in one-to-one correspondence
with elements of the space dt(M) = HomfaCM), SU(2))/ad SU(2).

The space 3t{M) is always compact, because the group π\(Μ) is finitely
generated. We will assume that the Hessian of CS is an isomorphism at
critical points. In the general case it is necessary first to perturb the Chern —
Simons function so that the new function has finitely many non-degenerate
critical points. Since a perturbed function is no longer canonical, one has to
show that the homology of the resulting complex does not depend on the
perturbation.

In order to construct the homology theory from the function CS, we must
clear up the indices of the critical points and gradient curves. As we see now,
gradient curves lead us to a four-dimensional gauge theory. Indeed, the metric
on the oriented three-dimensional manifold Μ determines the Hodge operator
*: Ω* (Μ) ® su (2) -*- Ω3-* (Μ) ® su (2). By combining it with the natural
pairing

Ω1 (Μ) ® su (2) χ Ω2 (Μ) ® su (2) -> R,

we obtain a ^(P)-invariant Riemannian metric on s/(P), which induces the
Riemannian metric on 0S(P). It is easy to verify that the gradient vector field
of the function CS is given by the correspondence A *->• 4π2 * FA. The
equation for gradient curves is of the form

dt - ^ * '

where t »-> At is some family of connections on M. The above equation does
not determine a flow for the same reasons that the heat transfer equation
cannot be solved. Nevertheless, there exist both stable and unstable manifolds
at critical points of the vector field A *-*• * FA , and they are exactly what one
needs to construct the Floer homology.

It is not difficult to verify that there is a natural isomorphism between
families of connections on M, that is, maps R ->- 3β (Ρ): ι >->- Ai and classes
of gauge equivalence of connections AA on a trivial bundle over the four-
dimensional manifold Μ χ R. In terms of connections on Μ χ R the
equation

dt ~
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takes the form

that is, it becomes the celebrated anti-self-duality equation for four-
dimensional manifolds. Solutions of this equation, subordinate to certain
boundary conditions, are exactly the minima of the Yang-Mills functional

YM: i J (P) — R: A - ^ \ tr(FA /\ * FA).

Taubes [50] developed a theory for this equation over non-compact periodic
manifolds similar to Af X R, and this theory plays a key role in the definition
of the boundary operator in the Floer complex.

A module basis in the Floer complex is given by irreducible flat
connections. The Hessian of the function CS at an irreducible flat connection
A can be written as a self-adjoint operator on

= (iin {dA: Ω0 (M) (x) su (2) -+ Ω1 (Μ) (g) su (2)})J- =•=

= ker {άκ: Ω1 (M) <g) su (2) -> Ω" (Μ) (x) su (2)}.

It is easy to see that the above operator is nothing but

—*dA- ker dA -*• ker dA.

This is a self-adjoint Fredholm operator with discrete spectrum unbounded
both from below and from above. Hence, it is impossible to define an index
in a naive way, but there is a procedure to resolve this problem. The index
difference i(a) — i(b) for two critical points a = [A], b = [B] equals the
number of eigenvalues, crossing over from + to —, minus the number of
transitions from — to + in a one-parameter family of spectra of Hessians
t »-+· Hess (CSAt), where A, is a path from [A] to [B]. This number i(a, b, At)
of eigenvalues passing through zero, taken with the opposite sign, is called the
spectral flow of a family of operators and it depends only on the homotopy
class of the path t (-• At. The spectral flow and its connection with the index
theory have been studied in detail by Atiyah, Patodi and Singer [10]. For
every t, the connection At should be irreducible, because at a reducible
connection the correspondence A ·->- ker dA (Ζ Ω1 (Μ) (x) su (2) is no longer
continuous, and hence the spectrum in this case does not transform
continuously.

It is easy to see that the spectral flow of a family of Hessians equals the
spectral flow of the following family of self-adjoint elliptic operators on Μ
taken with the opposite sign:

DA{ = * d A j + dAf *: O o d a (M) ® su (2) - , ί1Μ (Μ) <g> su{2),
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under the assumption that all the A, are irreducible. An advantage of this
description is that both the operator DA and its spectrum depend continuously
on A even if A is reducible.

Now we are in a position to define the index of a critical point a e 9S(P).
In principle, it could be done this way: we join the point θ corresponding to
the trivial connection to a by a path At and take the spectral flow ι(θ, a, At).
Unfortunately, the operator D$ has zero eigenvalue of multiplicity three, and
hence the spectral flow in this case is not well defned. To eliminate this
shortcoming, we consider a typical connection Θ' in a small neighbourhood
of Θ. It can be chosen so that the operator ZV has three simple eigenvalues
whose absolute values are less than that of any other eigenvalue. We denote
by ρ (θ') the number of positive eigenvalues among those three that have just
appeared, and put

i (a) = i (Θ', a, At) + ρ (θ') (mod 8),

where At is a path joining Θ' and a. It is not difficult to see that the number
i(a) does not depend on the choice of Θ'. Since πι ($ύ (Ρ)) — Ζ, it follows
from the results of [10] that the spectral flow along a closed loop is divisible
by 8. Therefore the index i(a) does not depend on the choice of At.

Now we construct the Floer chain complex Cj, j GE Z/8, by defining C,· as
the free module over Ζ generated by irreducible flat connections with index
equal toy. The boundary operator d : C,· -»· C,_i, as is usual in Morse
theory, is determined by the number of gradient curves taken with sign. We
noticed above that parametrized gradient curves At are elements of the moduli
space of instantons (anti-self-dual connections) on the four-dimensional
manifold Μ" Χ R, We denote by Jikio, b) the moduli space of instantons A,
on Μ Χ R satisfying the following conditions:

lim At=a, lim At = b and i(a,b, At) = /CGEZ-
t—*•—oo t—*-oo

On can arrange that Μ^{α> b) is a smooth manifold by a small perturbation of
the self-duality equations.

Theorem 4.4.
(i) Mi£a, b) is a smooth k-dimensional manifold (possibly, an empty one);
(i) there is defined a proper free action of the group R on the manifold

Jik(a, b), induced by translations on Μ χ R;
(iii) Jtk(a, b) is canonically oriented;
(iv) Jikia, b) has finitely many connection components.

The solutions At are determined by their initial values AQ, therefore the
map {Λ,} ->• Ao determines an immersion of the manifold M^a, b) in &(P).
It follows from Theorem 4.4 that the set of non-parametrized gradient curves
Jl-i (a, fe)/(R is a compact oriented zero-dimensional manifold, that is, a finite
set of signed points. Let i(a) — i(b) = 1 and let (da, by E Z be the sum of
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the signs of the finite set ΛΛ (a, b) = Mx {a, b)/R. We define an operator
d : Ck -*• Cfc_i by putting

da = 2 (da,b}b.
i(b)=k-l

It turns out that i/ is a boundary operator in the Floer complex. The linearity
of d is obvious. The relation d2 = 0 follows from the fact that the matrix
elements

(dda, c> = 2 <^α- δ> · <5ί>· c>
6«*

correspond to the sum of products of signs in the decomposition

Mx (a, c) = J Λ-ι (α> b) Χ Λ'ι (6· c)·
be-»*

By definition, HF* (M) = H% (C, d), where (C, </) is the Floer complex.
In conclusion, we note an important property of the Floer homology

Ht\ (M). We denote by Μ the manifold Μ with opposite orientation. Then
there is a non-degenerate pairing

HFj (Μ) χ HF3.j (M) -+ Z.

It is obtained as follows. First of all, the Chern —Simons functional CS
satisfies the relation

CSM (-4) = -CSM (A),

and hence by changing the orientation to the opposite one the Hessian CS
changes sign. Hence, ΪΜ (θ', α, .4») = —i^ (θ', α, Λ,) for the spectral flow of
the Fredholm operator DA{. Further, it is obvious that

PM (Θ') = 3 - ρΈ (θ'),

therefore

<M (a) = 3 — ίΜ (α),

that is,

Cj (M) - C-j (M).

Now let a e Cj(M) and b e C,_i(M) be basis vectors, that is, irreducible
flat connections. Then both incidence coefficients (dMa, by and (d^b, a} are
equal to the number of gradient curves passing from a to b and counted with
signs. We can verify that these signs coincide, that is, the coefficients

b> and (d^b, a> are equal. Thus, we get a natural bilinear pairing

HFj (M) X f/7'V-j (M) -»- Z.
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